Extracellular matrix reorganization, a concurrent process of endometrial decidualization, has garnered widespread recognition. However, our understanding of this process remains limited. In this study, we aimed to investigate the expression, spatial distribution, and reorganization of fibrillar collagens, elastin, and lysyl oxidases within the decidua. Using second harmonic generation imaging, we successfully recorded fibrillar collagen reorganization between preimplantation and decidualized endometrium. Upon embryo implantation, the fibrillar collagens align themselves parallel to the direction of embryo invasion. Furthermore, we employed confocal imaging analysis to reveal distinct expression and spatial distribution patterns of elastin and lysyl oxidase-like enzymes. Elastin expression begins to manifest surrounding the implanting embryo, extends into the decidua, and exhibits a high concentration in the mesometrial region after gestation day 8. All lysyl oxidase-like enzymes are localized within the decidua, although they exhibit varying expression patterns. To gain further insights, we utilized an in vitro stromal cell decidualization model and provided compelling evidence that stromal cells serve as the primary source of the extracellular matrix components during endometrial decidualization. Additionally, we demonstrated that the genes encoding factors involved in the synthesis, processing, and assembly of fibrillar collagen and elastic fibers exhibit differential expression patterns during in vitro decidualization. Genes such as asporin, decorin, thrombospondin 2, fibulin 2, fibulin 5, and lysyl oxidase show significant induction during in vitro decidualization. In summary, our comprehensive analysis provides a detailed evaluation of the expression, spatial distribution, and reorganization of fibrillar collagens, elastin, and lysyl oxidases during the process of endometrial decidualization.
Extracellular Matrix Reorganization During Endometrial Decidualization.
阅读:3
作者:Gebril Mona, Mulder Sparhawk, Das Rimi, Nallasamy Shanmugasundaram
期刊: | bioRxiv | 影响因子: | 0.000 |
时间: | 2025 | 起止号: | 2025 Mar 25 |
doi: | 10.1101/2025.03.22.644728 |
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。