C-mannosyltransferase DPY19L1L-mediated Reissner Fiber formation is critical for zebrafish (Danio rerio) body axis straightening.

阅读:2
作者:Tian Guiyou, Huang Lirong, Xu Zhaopeng, Lu Chen, Yuan Wei, Wu Yulin, Liao Zhipeng, Gao Jia, Luo Qiang, Cheng Bo, Liao Xinjun, Lu Huiqiang
The successful secretion and assembly of subcommissural organ (SCO)-spondin are crucial for Reissner Fiber (RF) formation and body axis straightening in zebrafish. However, the mechanisms underlying RF formation remain largely unknown. Here, we report that the C-mannosyltransferase dpy19l1l (dumpy-19 like 1 like) is expressed in the spinal cord during zebrafish embryonic development. Mutation in dpy19l1l resulted in idiopathic scoliosis (IS)-like body axis curvature in the absence of muscle or cilia defects. URP2 expression was down-regulated in dpy19l1l(-/-) mutants. Notably, RF formation was impaired in dpy19l1l(-/-) mutants, and a similar phenotype was induced in wild-type embryos by injecting messenger RNA encoding a C-mannosylation catalytic site-mutated dpy19l1l variant (E106A mdpy19l1l). Furthermore, E106A mDPY19L1L failed to glycosylate Flag-tagged SCO-spondin TSRs (thrombospondin type 1 repeats). Our findings suggest that DPY19L1L-mediated C-mannosylation of SCO-spondin TSRs promotes RF formation and URP2 induction, representing a critical supplementary mechanism for body axis straightening in zebrafish.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。