Acute injuries can progress into painful states that endure long after healing. The mechanisms underlying this transition remain unclear, but metabolic adaptations to the bioenergy demands imposed by injury are plausible contributors. Here we show that peripheral injury activates AKT/mTORC1 in afferent segments of the mouse spinal cord, redirecting local core metabolism toward biomass production while simultaneously suppressing autophagy-mediated biomass reclamation. This metabolic shift supports neuroplasticity, but creates a resource bottleneck that depletes critical spinal cord nutrients. Preventing this depletion with a modified diet normalizes biomass generation and autophagy and halts the transition to chronic pain. This effect, observed across multiple pain models, requires activation of the nutrient sensors, sirtuin-1 and AMPK, as well as restoration of autophagy. The findings identify metabolic reprogramming and consequent autophagy suppression as key drivers of the progression to pain chronicity and highlight nutritional and pharmacological interventions that could prevent this progression after surgery or other physical traumas.
Metabolic reprogramming in the spinal cord drives the transition to pain chronicity.
脊髓代谢重编程驱动疼痛向慢性化转变
阅读:6
作者:Tagne Alex Mabou, Fotio Yannick, Lee Hye-Lim, Jung Kwang-Mook, Katz Jean, Ahmed Faizy, Le Johnny, Bazinet Richard, Jang Cholsoon, Piomelli Daniele
| 期刊: | bioRxiv | 影响因子: | 0.000 |
| 时间: | 2025 | 起止号: | 2025 Jun 19 |
| doi: | 10.1101/2025.01.30.635746 | 研究方向: | 代谢 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
