Heat shock proteins (HSPs) play crucial roles in human endothelial cell functions such as migration and angiogenesis. However, human HSP dynamics under stress conditions such as heat shock (HS) and hypoxia in human endothelial cells (ECs) are enigmatic, and the characteristics of HSPs in ECs after exposure to thermal stress and a low-oxygen environment are unknown. We hypothesized that ECs adapt to HS and hypoxia by modulating chaperome oligomerization and that HSP70 is a major determinant of the endothelial phenotype. HSP70 inhibition with VER-155008 or YM-1 in primary human endothelial cells decreases EC proliferation, migration, and angiogenesis at baseline and after heat shock recovery. We showed that vascular-independent HSC/P70 multimeric complexes in primary human veins (HUVEC) and coronary artery ECs (HCAEC) accumulate after HS and are decreased by hypoxia. HS recovery increases the number of HSP90 dimers, inducible HSP70, and HSP40 macromolecular complexes, whereas HSC70 returns to baseline. We demonstrated that the HS response and hypoxia regulate HSPs through a new layer of complexity, oligomerization, in addition to classical cochaperone/NEF interactions. The biphasic temporal oligomerization of molecular chaperones in the recovery phase provides a novel face of the heat shock response. In addition, shifts in the subcellular location and upregulation of HSP70 were also observed here. The decrease in HSP expression caused by hypoxia raises the possibility that decreased chaperone power contributes to the endothelial dysfunction found in atherosclerosis, thrombosis, and cancer. Together, these results show that HSP70 is pivotal to the healthy endothelial response in veins and coronary arteries, and we revealed human HSP dynamics in the vascular response to proteotoxic stress.
Dynamics of heat shock protein 70Â kDa in heat-shocked and hypoxic human endothelial cells.
阅读:3
作者:Coimbra Luiza B C T, Pinto-Martinez Andrea, Pavan Isadora C B, Melo Everton G, Araujo ThaÃs L S
期刊: | Cell Stress & Chaperones | 影响因子: | 3.200 |
时间: | 2025 | 起止号: | 2025 Jul;30(4):100085 |
doi: | 10.1016/j.cstres.2025.100085 |
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。