Vascularization of PEGylated fibrin hydrogels increases the proliferation of human iPSC-cardiomyocytes.

聚乙二醇化纤维蛋白水凝胶的血管化可促进人类iPSC-心肌细胞的增殖

阅读:8
作者:Vanderslice Ethan J, Golding Staunton G H, Jacot Jeffrey G
Studies have long sought to develop engineered heart tissue for the surgical correction of structural heart defects, as well as other applications and vascularization of this tissue has presented a challenge. Recent studies suggest that vascular cells and a vascular network may have regenerative effects on implanted cardiomyocytes (CM) and nearby heart tissue separate from perfusion of oxygen and nutrients. The goal of this study was to test whether vascular cells or a formed vascular network in a fibrin-based hydrogel would alter the proliferation of human iPSC-derived CM. First, vascular network formation in a slowly degrading PEGylated fibrin hydrogel was optimized by altering the cell ratio of human umbilical vein endothelial cells to human dermal fibroblasts, the inclusion of growth factors, and the total cell concentration. An endothelial to fibroblast ratio of 5:1 and a total cell concentration of 1.1 × 10(6) cells/mL without additional growth factors generated robust vascular networks while minimizing the number of cells required. Using this optimized system, human iPSC-derived CM were cultured on hydrogels without vascular cells, hydrogels with unorganized encapsulated vascular cells, or hydrogels with encapsulated vascular cells organized into networks for 7 days. CM proliferation and gene expression were assayed following 7 days of culture on the hydrogels. The presence of vascular cells in the hydrogel, whether unorganized or in vascular networks, significantly increased CM proliferation compared to an acellular hydrogel. Hydrogels with unorganized vascular cells resulted in lower CM maturity evidenced by decreased expression of cardiac troponin t (TNNT2), myosin light chain 7, and phospholamban compared to hydrogels without vascular cells and hydrogels with vascular networks. Altogether, this study details a robust method of forming rudimentary vascular networks in a fibrin-based hydrogel and shows that a hydrogel containing endothelial cells and fibroblasts can induce proliferation in adjacent CM, and these cells do not hinder CM gene expression when organized into a vascular network.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。