Amphiregulin (AREG), a member of the EGF family, exists as a transmembrane protein anchored to the cell surface. In response to external stimuli, its extracellular domain is released into the extracellular matrix through paracrine or autocrine signaling. However, its role in septic macrophage pyroptosis remains poorly understood. This study aims to investigate the role of extracellular AREG in septic macrophages, mice, and patients. We found that high expression of extracellular AREG was regulated by RPLP1 at the translation level, which increased the expression of IL-6, CCL2, and CCL3 protein, as well as Caspase 1, IL-1β, and Nlrp3 mRNA expression, resulting in macrophage pyroptosis. Mechanistically, macrophage pyroptosis was aggravated by extracellular AREG pretreatment, which was triggered by extracellular AREG and ATP (adenosine 5'-triphosphate). The AREG-neutralizing antibody reduced LPS-induced epidermal growth factor receptor (EGFR) activation, TLR4 expression, and pyroptosis. Extracellular AREG-induced macrophage pyroptosis decreased with EGFR and NF-κB inhibition, as well as TLR4 and Myd88 knockout. Additionally, DTT-pretreated extracellular AREG suppressed macrophage pyroptosis. In vivo, extracellular AREG attenuates systemic inflammation infiltration and delays survival in a septic mouse model. Furthermore, extracellular AREG mediates sepsis in humans, and genes involved in the AREG-mediated pyroptosis signaling pathway were highly expressed in patients with severe sepsis compared with those with general or moderate sepsis. Overall, LPS-induced extracellular AREG aggravated or triggered macrophage pyroptosis through the EGFR/TLR4/Myd88/NF-κB signaling pathway, providing promising treatment strategies for sepsis.
LPS-induced extracellular AREG triggers macrophage pyroptosis through the EGFR/TLR4 signaling pathway.
LPS诱导的细胞外AREG通过EGFR/TLR4信号通路触发巨噬细胞焦亡
阅读:9
作者:Yuan Gang, Qiao Qudi, Jiang Aolin, Jiang Zehui, Luo Haihua, Huang Lin, Wang Jieyan, Jiang Yong
| 期刊: | Frontiers in Immunology | 影响因子: | 5.900 |
| 时间: | 2025 | 起止号: | 2025 Apr 11; 16:1549749 |
| doi: | 10.3389/fimmu.2025.1549749 | 靶点: | EGFR |
| 研究方向: | 信号转导、细胞生物学 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
