Endosomes are a central sorting hub for membrane cargos. DNAJC13/RME-8 plays a critical role in endosomal trafficking by regulating the endosomal recycling or degradative pathways. DNAJC13 localizes to endosomes through its N-terminal Plekstrin Homology (PH)-like domain, which directly binds endosomal phosphoinositol-3-phosphate (PI(3)P). However, little is known about how DNAJC13 localization is regulated. Here, we show that two regions within DNAJC13, its J domain and disordered C-terminal tail, act as negative regulators of its PH-like domain. Using a structure-function approach combined with quantitative proteomics, we mapped these control points to a conserved YLT motif in the C-terminal tail as well as the catalytic HPD triad in its J domain. Mutation of either motif enhanced DNAJC13 endosomal localization in cells and increased binding to PI(3)P in vitro. Further, these effects required the N-terminal PH-like domain. We show that, similar to other PI(3)P binding domains, the N-terminal PH-like domain binds PI(3)P weakly in isolation and requires oligomerization for efficient PI(3)P binding and endosomal localization. Together, these results demonstrate that interaction between DNAJC13 and PI(3)P serves as a molecular control point for regulating DNAJC13 localization to endosomes.
DNAJC13 localization to endosomes is opposed by its J domain and its disordered C-terminal tail.
DNAJC13 定位于内体受到其 J 结构域和无序 C 端尾部的阻碍
阅读:6
作者:Adoff Hayden, Novy Brandon, Holland Emily, Lobingier Braden T
| 期刊: | bioRxiv | 影响因子: | 0.000 |
| 时间: | 2024 | 起止号: | 2024 Dec 20 |
| doi: | 10.1101/2024.12.19.629517 | 研究方向: | 其它 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
