Thrombospondin-1 Silencing Ameliorates Osteoblastic Differentiation of Aortic Valve Interstitial Cells via Inhibiting Nuclear Factor-κB Pathway.

抑制血小板反应蛋白-1可改善主动脉瓣间质细胞的成骨分化,其机制是通过抑制核因子-β通路

阅读:14
作者:Li Qing, Song Chengxiang, Wei Zisong, Li Junli, Zhou Hao, Wang Shuoding, Li Hongde, Yang Haoran, Luo Qiang, Chen Mao
Objective: Calcific aortic valve disease (CAVD) is a progressive cardiovascular condition driven by the osteogenic differentiation of valve interstitial cells (VICs), with no effective drug therapies currently available. Hence, our objective is to investigate the impact of thrombospondin-1 (TSP-1) silencing on CAVD progression. Methods: In vitro experiments were employed using human primary VICs with TSP-1 knockdown, cultured in osteogenic induction medium, and followed by analyses including western blot, alkaline phosphatase staining, alizarin red staining, immunofluorescence, and flow cytometry. In vivo experiments used two murine models of CAVD to determine the role of TSP-1 silencing on aortic valve calcification. Results: We observed that silencing of TSP-1 reduced the osteogenic differentiation of VICs. Subsequent experiments demonstrated that TSP-1 knockdown suppressed nuclear factor-κB (NF-κB)-mediated inflammation during osteoblastic differentiation of VICs. Consistent findings were also observed in two murine models of CAVD. Conclusions: The present study has shown that TSP-1 silencing could mitigate the development of CAVD by inhibiting NF-κB-mediated inflammation. We propose that targeting TSP-1-mediated NF-κB pathway could provide a potential therapeutic method for treating CAVD.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。