The RNA interference (RNAi) machinery is a key cellular mechanism catalyzing biogenesis and function of miRNAs to post-transcriptionally regulate mRNA expression. The RNAi machinery includes a set of protein complexes with subcellular localization traditionally presented in a uniform fashion: the microprocessor processes miRNAs in the nucleus, whereas the DICER and the RNA-induced silencing complex (RISC) further process and enable activity of miRNAs in the cytoplasm. However, several studies have identified subcellular patterns of RNAi components that deviate from this model. We have particularly shown that RNAi complexes associate with the adherens junctions of well-differentiated epithelial cells, through the E-cadherin partner PLEKHA7. To assess the extent of these subcellular topological patterns, we examined subcellular localization of the microprocessor and RISC in a series of human cell lines and normal human tissues. Our results show that junctional localization of RNAi components is a broad characteristic of differentiated epithelia, but it is absent in transformed or mesenchymal cells and tissues. We also find extensive localization of the microprocessor in the cytoplasm, as well as of RISC in the nucleus. These findings expose a RNAi machinery with multifaceted subcellular topology that may inform its physiological role and calls for updating of the current models.
The subcellular topology of the RNAi machinery is multifaceted and reveals adherens junctions as an epithelial hub.
RNAi 机制的亚细胞拓扑结构是多方面的,揭示了粘附连接作为上皮枢纽的作用
阅读:6
作者:Nair-Menon Joyce, Kingsley Christina, Mesnaoui Houda, Risner Alyssa, Jarvis Jordan E, Lin Peter, Wilson Kyrie, Rohrer Bärbel, Kourtidis Antonis
| 期刊: | Scientific Reports | 影响因子: | 3.900 |
| 时间: | 2025 | 起止号: | 2025 Jul 10; 15(1):24814 |
| doi: | 10.1038/s41598-025-09795-1 | 研究方向: | 细胞生物学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
