Stochastic demethylation and redundant epigenetic suppressive mechanisms generate highly heterogeneous responses to pharmacological DNA methyltransferase inhibition.

阅读:2
作者:Jakobsen Mie K, Traynor Sofie, Nielsen Aaraby Y, Dahl Christina, Staehr Mette, Jakobsen Simon T, Madsen Maria S, Siersbaek Rasmus, Terp Mikkel G, Jensen Josefine B, Pedersen Christina B, Shrestha Anup, Brewer Jonathan R, Duijf Pascal H G, Gammelgaard Odd L, Ditzel Henrik J, Kirkin Alexei F, Guldberg Per, Gjerstorff Morten F
BACKGROUND: Despite promising preclinical studies, the application of DNA methyltransferase inhibitors in treating patients with solid cancers has thus far produced only modest outcomes. The presence of intratumoral heterogeneity in response to DNA methyltransferase inhibitors could significantly influence clinical efficacy, yet our understanding of the single-cell response to these drugs in solid tumors remains very limited. METHODS: In this study, we used cancer/testis antigen genes as a model for methylation-dependent gene expression to examine the activity of DNA methyltransferase inhibitors and their potential synergistic effect with histone deacetylase inhibitors at the single-cancer cell level. The analysis was performed on breast cancer patient-derived xenograft tumors and cell lines, employing a comprehensive set of techniques, including targeted single-cell mRNA sequencing. Mechanistic insights were further gained through DNA methylation profiling and chromatin structure analysis. RESULTS: We show that breast cancer tumors and cell cultures exhibit a highly heterogenous response to DNA methyltransferase inhibitors, persisting even under high drug concentrations and efficient DNA methyltransferase depletion. The observed variability in response to DNA methyltransferase inhibitors was independent of cancer-associated aberrations and clonal genetic diversity. Instead, these variations were attributed to stochastic demethylation of regulatory CpG sites and the DNA methylation-independent suppressive function of histone deacetylases. CONCLUSIONS: Our findings point to intratumoral heterogeneity as a limiting factor in the use of DNA methyltransferase inhibitors as single agents in treatment of solid cancers and highlight histone deacetylase inhibitors as essential partners to DNA methyltransferase inhibitors in the clinic.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。