Monkeypox virus spreads from cell-to-cell and leads to neuronal death in human neural organoids.

猴痘病毒在细胞间传播,导致人类神经类器官中的神经元死亡

阅读:8
作者:Schultz-Pernice Isabel, Fahmi Amal, Brito Francisco, Liniger Matthias, Chiu Yen-Chi, David Teodora, Oliveira Esteves Blandina I, Golomingi Antoinette, Zumkehr Beatrice, Gerber Markus, Jandrasits Damian, Züst Roland, Steiner Selina, Wotzkow Carlos, Blank Fabian, Engler Olivier B, Summerfield Artur, Ruggli Nicolas, Baud David, Alves Marco P
In 2022-23, the world witnessed the largest recorded outbreak of monkeypox virus (MPXV). Neurological manifestations were reported alongside the detection of MPXV DNA and MPXV-specific antibodies in the cerebrospinal fluid of patients. Here, we analyze the susceptibility of neural tissue to MPXV using human neural organoids (hNOs) exposed to a clade IIb isolate. We report susceptibility of several cell types to the virus, including neural progenitor cells and neurons. The virus efficiently replicates in hNOs, as indicated by the exponential increase of infectious viral titers and establishment of viral factories. Our findings reveal focal enrichment of viral antigen alongside accumulation of cell-associated infectious virus, suggesting viral cell-to-cell spread. Using an mNeonGreen-expressing recombinant MPXV, we confirm cell-associated virus transmission. We furthermore show the formation of beads in infected neurites, a phenomenon associated with neurodegenerative disorders. Bead appearance precedes neurite-initiated cell death, as confirmed through live-cell imaging. Accordingly, hNO-transcriptome analysis reveals alterations in cellular homeostasis and upregulation of neurodegeneration-associated transcripts, despite scarcity of inflammatory and antiviral responses. Notably, tecovirimat treatment of MPXV-infected hNOs significantly reduces infectious virus loads. Our findings suggest that viral disruption of neuritic transport drives neuronal degeneration, potentially contributing to MPXV neuropathology and revealing targets for therapeutic intervention.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。