A rare haplotype of the GJD3 gene segregating in familial Meniere's disease interferes with connexin assembly.

在家族性梅尼埃病中分离的 GJD3 基因的罕见单倍型会干扰连接蛋白的组装

阅读:10
作者:Escalera-Balsera Alba, Robles-Bolivar Paula, Parra-Perez Alberto M, Murillo-Cuesta Silvia, Chua Han Chow, Rodríguez-de la Rosa Lourdes, Contreras Julio, Domarecka Ewa, Amor-Dorado Juan Carlos, Soto-Varela Andrés, Varela-Nieto Isabel, Szczepek Agnieszka J, Gallego-Martinez Alvaro, Lopez-Escamez Jose A
BACKGROUND: Familial Meniere's disease (FMD) is a rare polygenic disorder of the inner ear. Mutations in the connexin gene family, which encodes gap junction proteins, can also cause hearing loss, but their role in FMD is largely unknown. METHODS: We retrieved exome sequencing data from 94 individuals in 70 Meniere's disease (MD) families. Through gene burden analysis, we calculated the enrichment of rare variants (allele frequency < 0.05) in connexins genes in FMD individuals compared with the reference population. The connexin monomer and the homomeric connexon structural models were predicted using AlphaFold2 and HDOCK. RT-qPCR and immunofluorescence were done in mice cochleae to identify expression of the mouse ortholog candidate gene Gjd3. RESULTS: We found an enrichment of rare missense variants in the GJD3 gene when comparing allelic frequencies in FMD (N = 94) with the Spanish reference population (OR = 3.9[1.92-7.91], FDR = 2.36E-03). In the GJD3 sequence, we identified a rare haplotype (TGAGT) composed of two missense, two synonymous, and one downstream variant. This haplotype was found in five individuals with FMD, segregating in three unrelated families with a total of ten individuals; and in another eight MD individuals. GJD3 encodes the gap junction protein delta 3, also known as human connexin 31.9 (Cx31.9). The protein model predicted that the NP_689343.3:p.(His175Tyr) missense variant could modify the interaction between connexins and the connexon assembly, affecting the homotypic GJD3 gap junction between cells. Our studies in mice revealed that Gjd3-encoding Gjd3 or mouse connexin 30.2 (Cx30.2)-was expressed in the organ of Corti and vestibular organs, particularly in the tectorial membrane, the base of inner and outer hair cells and the nerve fibers. CONCLUSIONS: The present results describe a novel association between GJD3 and FMD, providing evidence that FMD is related to changes in the inner ear channels, and supporting a new role of tectorial membrane proteins in MD.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。