BACKGROUND/OBJECTIVES: Fragile X syndrome (FXS) is a disease of pathologic epigenetic silencing induced by RNA. In FXS, an expanded CGG repeat tract in the FMR1 gene induces epigenetic silencing during embryogenesis. FMR1 silencing can be reversed with 5-aza-deoxyctidine (5-aza-dC), a nonspecific epigenetic reactivator; however, continuous administration of 5-aza-dC is problematic due to its toxicity. We describe an approach to restore FMR1 expression in FXS neurons by transient treatment with 5-aza-dC, followed by treatment with 2HE-5NMe, which binds the CGG repeat expansion in the FMR1 mRNA and could block the resilencing of the FMR1 gene after withdrawal of 5-aza-dC. METHODS: This study uses immunofluorescence and fluorescent in situ hybridization (FISH) to measure whether FMR1 expression is maintained in FXS post-mitotic neurons treated with 2HE-5NMe. Genome-wide profiling of histone marks was used to monitor epigenetic changes and drug selectivity in response to 5-aza-dC followed by 2HE-5NMe treatment. Changes to dendritic morphology were visualized using confocal microscopy. RESULTS: In this study, we find that 2HE-5Nme maintains FMR1 in a reactivated state after reactivation using 5-aza-dC in post-mitotic neurons. FMR1 reactivation in neurons results in the re-expression of FMRP and reversal of FXS-associated dendritic spine defects. CONCLUSIONS: These results demonstrate that an RNA-binding small molecule can achieve gene-specific epigenetic control and provide an approach for the restoration of FMRP in FXS neurons.
Sustained Epigenetic Reactivation in Fragile X Neurons with an RNA-Binding Small Molecule.
利用 RNA 结合小分子在脆性 X 神经元中持续激活表观遗传修饰
阅读:5
作者:Kam Christina W, Dumelie Jason G, Ciceri Gabriele, Yang Wang-Yong, Disney Matthew D, Studer Lorenz, Jaffrey Samie R
| 期刊: | Genes | 影响因子: | 2.800 |
| 时间: | 2025 | 起止号: | 2025 Feb 25; 16(3):278 |
| doi: | 10.3390/genes16030278 | 研究方向: | 神经科学、表观遗传 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
