Devices to treat peripheral nerve injury (PNI) must balance many considerations to effectively guide regenerating nerves across a gap and achieve functional recovery. To enhance efficacy, design features like luminal fillers have been explored extensively. Material choice for PNI devices is also critical, as the determining factor of device mechanics, and degradation rate and has increasingly been found to directly impact biological response. This study investigated the ways in which synthetic polymer materials impact the differentiation state and myelination potential of Schwann cells, peripheral nerve glia. Microporous substrates of polycaprolactone (PCL), poly(lactide-co-glycolide) (PLGA) 85:15, or PLGA 50:50 were chosen, as materials already used in nerve repair devices, representing a wide range of mechanics and degradation profiles. Schwann cells co-cultured with dorsal root ganglion (DRG) neurons on the substrates expressed more mature myelination proteins (MPZ) on PLGA substrates compared to PCL. Changes to myelination and differentiation state of glia were reflected in adhesion proteins expressed by glia, including β-dystroglycan and integrin α(6), both laminin binding proteins. Importantly, degradation products of the polymers affected glial expression independently of direct attachment. Fast degrading PLGA 50:50 substrates released measurable amounts of degradation products (lactic acid) within the culture period, which may push Schwann cells towards glycolytic metabolism, decreasing expression of early transcription factors like sox10. This study shows the importance of understanding not only material effects on attachment, but also on cellular metabolism which drives myelination responses.
Material matters: Degradation products affect regenerating Schwann cells.
物质因素很重要:降解产物会影响雪旺细胞的再生
阅读:9
作者:Pawelec Kendell M, Hix Jeremy M L, Shapiro Erik M
| 期刊: | Biomaterials Advances | 影响因子: | 6.000 |
| 时间: | 2024 | 起止号: | 2024 May;159:213825 |
| doi: | 10.1016/j.bioadv.2024.213825 | 研究方向: | 细胞生物学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
