Extracellular PHF-tau modulates astrocyte mitochondrial dynamics and mediates neuronal connectivity.

细胞外 PHF-tau 调节星形胶质细胞线粒体动力学并介导神经元连接

阅读:10
作者:Zufferey Valentin, Barve Aatmika, Parietti Enea, Belinga Luc, Bringaud Audrey, Varisco Yvan, Fabbri Kerstin, Capotosti Francesca, Bezzi Paola, Déglon Nicole, Marquet Pierre, Preitner Nicolas, Richetin Kevin
BACKGROUND: Tau is an intracellular protein that plays a crucial role in stabilizing microtubules. However, it can aggregate into various forms under pathological conditions and be secreted into the brain parenchyma. While the consequences of tau aggregation within neurons have been extensively studied, the effects of extracellular paired helical filaments of tau (ePHF-tau) on neurons and astrocytes are still poorly understood. METHODS: This study examined the effect of human ePHF-tau (2N4R) on primary cultures of rat neuroglia, focusing on changes in neurites or synapses by microscopy and analysis of synaptosome and mitochondria proteomic profiles after treatment. In addition, we monitored the behavior of mitochondria in neurons and astrocytes separately over three days using high-speed imaging and high-throughput acquisition and analysis. RESULTS: ePHF-tau was efficiently cleared by astrocytes within two days in a 3D neuron-astrocyte co-culture model. Treatment with ePHF-tau led to a rapid increase in synaptic vesicle production and active zones, suggesting a potential excitotoxic response. Proteomic analyses of synaptosomal and mitochondrial fractions revealed distinct mitochondrial stress adaptations: astrocytes exhibited elevated mitochondrial biogenesis and turnover, whereas neuronal mitochondria displayed only minor oxidative modifications. In a mixed culture model, overexpression of tau 1N4R specifically in astrocytes triggered a marked increase in mitochondrial biogenesis, coinciding with enhanced synaptic vesicle formation in dendrites. Similarly, astrocyte-specific overexpression of PGC1alpha produced a comparable pattern of synaptic vesicle production, indicating that astrocytic mitochondrial adaptation to ePHF-tau may significantly influence synaptic function. CONCLUSIONS: These findings suggest that the accumulation of PHF-tau within astrocytes drives changes in mitochondrial biogenesis, which may influence synaptic regulation. This astrocyte-mediated adaptation to tauopathy highlights the potential role of astrocytes in modulating synaptic dynamics in response to tau stress, opening avenues for therapeutic strategies aimed at astrocytic mechanisms in the context of neurodegenerative diseases.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。