This research investigates the regulatory role of the transcription factor PU.1 in type 1 conventional dendritic cells (cDC1) and its therapeutic potential of modulating the nuclear factor kappaB (NF-κB) cells signaling pathway in non-small cell lung cancer (NSCLC). Utilizing single-cell transcriptome sequencing and comprehensive bioinformatics tools, including the CIBERSORT algorithm, we analyzed the immune cell landscape within NSCLC tissues. Our analysis revealed distinct NSCLC subtypes and delineated the developmental trajectories and functional distinctions of cDC1 cells. Key differentially expressed genes (DEGs) and pivotal functional modules within these cells were identified, highlighting PU.1 as a critical mediator underexpressed in NSCLC samples. Functionally, PU.1 demonstrated the induction of the NF-κB pathway, which led to inhibited tumor proliferation and enhanced activation of cDC1, thereby suggesting its role in tumor immune surveillance. In vivo models confirmed the suppressive effect of PU.1 on NSCLC progression, mediated through its influence on cDC1 functionality via the NF-κB pathway. These findings propose PU.1 as a promising target for NSCLC therapeutic strategies, emphasizing the importance of transcriptional regulators in the tumor microenvironment.
PU.1 regulation of type 1 dendritic cell function via NF-κB pathway in inhibition of non-small cell lung cancer progression.
阅读:3
作者:Wang Tingting, Li Yishuo, Duan Qiongyu, Wang Chunlei, Wang Yixian, Hu Tianyu
期刊: | Journal of Pharmaceutical Analysis | 影响因子: | 8.900 |
时间: | 2025 | 起止号: | 2025 Jul;15(7):101154 |
doi: | 10.1016/j.jpha.2024.101154 |
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。