Clinical and Experimental Insights into the Role of NETosis in IgA Nephropathy Pathogenesis.

阅读:3
作者:Wang Gangan, Dong Yixin, Qiao Xiangyu, Jia Chunyu, Wang Jiahui, Chen Gang, Zheng Ke, Jiang Chengyu, Li Xuemei
INTRODUCTION: Neutrophil extracellular traps (NETs) contribute to inflammation and are implicated in autoimmune diseases; however, their role in IgA nephropathy (IgAN) remains unclear. This study aimed to investigate the involvement of NETosis in IgAN and its impact on renal injury and mesangial cell function, utilizing patient samples, mouse models, and in vitro assays. METHODS: RNA sequencing was performed on peripheral blood mononuclear cells (PBMCs) from IgAN patients to identify differentially expressed genes (DEGs) and NETosis-related pathways. An IgAN mouse model was established using bovine serum albumin, carbon tetrachloride, and lipopolysaccharide. Mice were treated with the peptidyl arginine deiminase-4 inhibitor GSK484 to evaluate the effects of NETosis inhibition. In vitro assays assessed the impact of NETosis on mesangial cells. RESULTS: RNA sequencing identified 905 DEGs in IgAN patients, with significant enrichment in neutrophil and NETosis pathways. Serum levels of NETosis markers - citrullinated histone H3 (CitH3), myeloperoxidase (MPO), and neutrophil elastase - were elevated in IgAN patients, with CitH3 levels correlating with Gd-IgA1. Inhibiting NETosis with GSK484 reduced CitH3 levels in IgAN mice and improved clinical outcomes, including decreased proteinuria and increased serum albumin. Histological analysis revealed reduced mesangial proliferation. In vitro, NETosis enhanced tumor necrosis factor-α (TNF-α) release from mesangial cells, an effect that was mitigated by GSK484. RNA-seq analysis of kidneys from GSK484-treated IgAN mice also revealed significant alterations in the PPAR signaling pathway. Additionally, TNF-α treatment of mesangial cells resulted in reduced PPARα expression, suggesting that NETosis may modulate this pathway through the release of TNF-α by mesangial cells. CONCLUSION: Our findings demonstrate that NETosis is upregulated in IgAN and plays a key role in its pathogenesis by promoting inflammatory cytokine release. Inhibition of NETosis improves both clinical and pathological outcomes, highlighting its potential as a therapeutic approach for managing IgAN.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。