Engineered Un1Cas12f1 with boosted gene-editing activity and expanded genomic coverage.

阅读:2
作者:Chen Li, Zhou Xujiao, Huang Chengsi, Zhang Yirou, Xin Changchang, Hong Jiaxu, Wang Yu
Compact programmable nucleases provide versatile genome editing tools with therapeutic potential, particularly when delivered via adeno-associated virus (AAV) vectors. However, their limited editing efficacy and stringent protospaceradjacent motif (PAM) requirements impose significant limitations in practical application. Here, we engineered MiniCasUltra, an optimized Un1Cas12f1 variant, through rational mutagenesis. MiniCasUltra exhibits sixfold higher editing activity than Un1Cas12f1, minimal off-target effects (on/off-target ratio > 10), and an expanded PAM preference (5'-WBTR). Using a single AAV vector encoding MiniCasUltra and two single-guide RNAs, we achieved simultaneous editing of two disease-causing genes (Pten and Fah) in mouse liver, with indel rates of 15.82% and 29.39%, respectively- significantly surpassing CasMINI V3.1 (3.45% and 10.98%). Furthermore, AAV delivery of MiniCasUltra targeting a noncanonical 5'-TCTG PAM site in human vascularendothelial growth factor A reduced choroidal neovascularization (CNV) lesions in a laser-induced CNV mouse model of neovascular age-related macular degeneration, a leading global cause of blindness. The broad and effective targeting capabilities of MiniCasUltra, coupled with its compact size, highlight its potential for in vivo genome editing and therapeutic interventions.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。