Biohybrid actuators leveraging living muscle tissue offer the potential to replicate natural motion for biomedical and robotic applications. However, challenges such as limited force output and inefficient force transfer at tissue interfaces persist. The myotendinous junction, a specialized interface connecting muscle to the tendon, plays a critical role in efficient force transmission for movement. Engineering muscle-tendon units in vitro is essential for replicating native musculoskeletal functions in biohybrid actuators. Here, we present a three-dimensionally bioprinted system integrating skeletal muscle tissue with tendon-mimicking anchors containing fibroblasts, forming a biomimetic interdigitated myotendinous junction. Using computational models, we optimized muscle geometries to enhance deformation and force generation. The engineered system improved mechanical stability, myofiber maturation, and force transmission, generating contractile forces of up to 350 micronewtons over a 3-month period. This work highlights how biomimetic designs and mechanical optimization can advance bioactuator technologies for applications in medicine and robotics.
Multicellular muscle-tendon bioprinting of mechanically optimized musculoskeletal bioactuators with enhanced force transmission.
阅读:2
作者:Filippi Miriam, Mock Diana, Fuentes Judith, Y Michelis Mike, Balciunaite Aiste, Paniagua Pablo, Hopf Raoul, Barteld Adina, Eng Selina, Badolato Asia, Snedeker Jess, Guix Maria, Sanchez Samuel, K Katzschmann Robert
期刊: | Science Advances | 影响因子: | 12.500 |
时间: | 2025 | 起止号: | 2025 Jul 18; 11(29):eadv2628 |
doi: | 10.1126/sciadv.adv2628 |
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。