Sanguinarine attenuates hypoxia/reoxygenation-triggered H9c2 cell injury through activation of the Nrf2/NLRP3 pathway.

血根碱通过激活 Nrf2/NLRP3 通路减轻缺氧/复氧引发的 H9c2 细胞损伤

阅读:8
作者:Qiu Bo, Li Xin, Wang Wenna
Myocardial ischemia/reperfusion injury (MI/RI) is a prevalent condition encountered by many patients with ischemic heart disease, which can badly influence the health of patients and even do harm their lives. Sanguinarine (SA), one active ingredient separated from the poppy family, and exhibits anti-oxidant, anti-tumor, and anti-inflammation properties. However, the precise regulatory impacts and associated mechanisms of SA in the progression of MI/RI remain largely elusive. In this study, firstly, H9c2 cells were treated by hypoxia/reoxygenation (HR) to mimic MI/RI cell model. It was uncovered that SA strengthened HR-mediated cell viability of H9c2 cells. Following HR treatment, there was an increase in the production of inflammatory markers (TNF-α, IL-1β, and IL-6), whereas this effect was mitigated after SA treatment. The oxidative stress was heightened after HR treatment, but this phenomenon was offset after SA treatment. SA activated the Nrf2/NLRP3 pathway and relieved proptosis. At last, through rescue assays, it was demonstrated that SA improved HR-triggered inflammation and oxidative stress through Nrf2 pathway. SA also modulated HR-triggered cell viability, inflammation, and oxidative stress in rat primary cardiomyocytes. In summary, our findings indicate that SA protects against HR-induced H9c2 cell injury through activation of the Nrf2/NLRP3 pathway. This discovery suggests that SA may be one helpful drug for ameliorating MI/RI.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。