Unravelling Cancer Immunity: Coagulation.Sig and BIRC2 as Predictive Immunotherapeutic Architects

揭开癌症免疫的神秘面纱:凝血信号通路和BIRC2作为预测性免疫治疗架构师

阅读:1
作者:Ziang Yao ,Jun Fan ,Yucheng Bai ,Jiakai He ,Xiang Zhang ,Renquan Zhang ,Lei Xue
Immune checkpoint inhibitors (ICIs) represent a groundbreaking advancement in cancer therapy, substantially improving patient survival rates. Our comprehensive research reveals a significant positive correlation between coagulation scores and immune-related gene expression across 30 diverse cancer types. Notably, tumours exhibiting high coagulation scores demonstrated enhanced infiltration of cytotoxic immune cells, including CD8(+) T cells, natural killer (NK) cells, and macrophages. Leveraging the TCGA pan-cancer database, we developed the Coagulation.Sig model, a sophisticated predictive framework utilising a coagulation-related genes (CRGs) to forecast immunotherapy outcomes. Through rigorous analysis of ten ICI-treated cohorts, we identified and validated seven critical CRGs: BIRC2, HMGB1, STAT2, IFNAR1, BID, SPATA2, IL33 and IFNG, which form the foundation of our predictive model. Functional analyses revealed that low-risk tumours characterised by higher immune cell populations, particularly CD8(+) T cells, demonstrated superior ICI responses. These tumours also exhibited increased mutation rates, elevated neoantigen loads, and greater TCR/BCR diversity. Conversely, high-risk tumours displayed pronounced intratumor heterogeneity (ITH) and elevated NRF2 pathway activity, mechanisms strongly associated with immune evasion. Experimental validation highlighted BIRC2 as a promising therapeutic target. Targeted BIRC2 knockdown, when combined with anti-PD-1 therapy, significantly suppressed tumour growth, enhanced CD8(+) T cell infiltration, and amplified IFN-γ and TNF-α secretion in tumour models. Our findings position the Coagulation.Sig model as a novel, comprehensive approach to personalised cancer treatment, with BIRC2 emerging as both a predictive biomarker and a potential therapeutic intervention point.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。