Nanoscale acoustic oscillator for mechanoimmunology: NAOMI.

阅读:2
作者:He Ye, Jin Ke, Pan Bo, Li Ke, Mai John D H, Xu Xianchen, Chen Ying, Ma Zhiteng, Yang Kaichun, Yang Shujie, Shambaugh Kilian, Liu Mingyuan, Xia Jianping, Wu Yuqi, Lee Luke P, Huang Tony Jun
Mechanoimmunology explores how mechanical forces orchestrate immune responses, offering insights into immune cell functions and the mechanisms underlying mechanotransduction. A critical challenge in this field is the absence of reliable platforms that apply precise, consistent mechanical stimuli to individual cells while enabling reproducible immune activation. Here, we present a nanoscale acoustic oscillator for mechanoimmunology applications: NAOMI. NAOMI features micropatterned pillars that support uniform cell monolayer formation with an integrated acoustic transducer that delivers highly controlled 3D nanoscale oscillations (±1-nanometer deviation) for up to 72 hours. Unlike conventional passive platforms relying on static stiffness or surface topography, NAOMI enables dynamic, programmable stimulation with high precision and reproducibility. Validation studies demonstrate that NAOMI notably enhances mechanical stress intensity and cell displacement, driving robust M1 polarization in macrophages. NAOMI provides a practical and versatile platform for studying mechanoimmunology, offering high precision, stability, and tunability. Its capabilities also position it well to support future research and drive innovative discoveries in the field.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。