Dynamic SAS-6 phosphorylation aids centrosome duplication and elimination in C. elegans oogenesis.

动态 SAS-6 磷酸化有助于秀丽隐杆线虫卵子发生过程中中心体的复制和消除

阅读:7
作者:Qi Feifei, Yin Shanshan, Yang Xiangrui, Ju Ning, Liu Bohan, Zhang Xing, Zhu Zixuan, Ji Li, Zhang Fuxin, Zhao Li, Wang Ruoxi, Liu Min, Zhang Liangran, Zhao Huijie, Zhou Jun, Gao Jinmin
In most metazoans, centrosome elimination during oogenesis ensures accurate centriole inheritance in the zygote, yet the molecular mechanisms remain poorly understood. Here, we reveal a critical role for controlled SAS-6 phosphorylation in centrosome dynamics during oogenesis. Centrioles disassemble during late meiotic prophase, while the cartwheel protein SAS-6 exhibits dynamic behavior in early meiotic prophase. Purified SAS-6 undergoes phase separation in vitro, and overexpressed SAS-6 forms droplets in cells. Mass spectrometry and kinase assays reveal that SAS-6 is phosphorylated at its C-terminus in cells and in vivo, with CDK-1 identified as a direct kinase. This phosphorylation inhibits SAS-6 phase separation and weakens interactions between centriolar proteins. SAS-6 degradation confirms its role in centrosome stability, and CDK-1 activity is required for timely centriole disassembly. Phospho-mimetic and phospho-deficient mutants demonstrate that dynamic SAS-6 phosphorylation is essential for centrosome assembly and elimination. We propose that the disordered C-terminus of SAS-6 facilitates cartwheel stacking via multivalent weak interactions, promoting centriole stability. Phosphorylation disrupts these interactions, impairing centrosome duplication and promoting elimination during oogenesis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。