Calcium transients regulate the apical emergence of basally located progenitors during Xenopus skin development.

阅读:2
作者:Christodoulou Neophytos, Skourides Paris A
The integration of basally located progenitors into an existing epithelium, termed apical emergence, is crucial for the morphogenesis and homeostasis of epithelial tissues and organs. Using Xenopus as a model system, we explore the role of intracellular calcium in apical emergence during the development of mucociliary skin epithelium. Our findings reveal that calcium transients precede the apical emergence of Multiciliated cell (MCC) progenitors and are essential for their insertion into the overlying skin epithelium. Furthermore, we demonstrate that phospholipase C (PLC) activity is required for generating calcium transients, which regulate MCC apical emergence via Calmodulin. The PLC/Ca²⁺/Calmodulin axis is necessary for the function of the apical actin network by influencing its stability. Lastly, we show that intracellular calcium regulates apical emergence in distinct basal progenitors. This study advances our understanding of the molecular mechanisms governing apical emergence and highlights the importance of calcium in coordinating cytoskeletal dynamics during epithelial morphogenesis.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。