The integration of basally located progenitors into an existing epithelium, termed apical emergence, is crucial for the morphogenesis and homeostasis of epithelial tissues and organs. Using Xenopus as a model system, we explore the role of intracellular calcium in apical emergence during the development of mucociliary skin epithelium. Our findings reveal that calcium transients precede the apical emergence of Multiciliated cell (MCC) progenitors and are essential for their insertion into the overlying skin epithelium. Furthermore, we demonstrate that phospholipase C (PLC) activity is required for generating calcium transients, which regulate MCC apical emergence via Calmodulin. The PLC/Ca²âº/Calmodulin axis is necessary for the function of the apical actin network by influencing its stability. Lastly, we show that intracellular calcium regulates apical emergence in distinct basal progenitors. This study advances our understanding of the molecular mechanisms governing apical emergence and highlights the importance of calcium in coordinating cytoskeletal dynamics during epithelial morphogenesis.
Calcium transients regulate the apical emergence of basally located progenitors during Xenopus skin development.
在非洲爪蟾皮肤发育过程中,钙瞬变调节基底祖细胞的顶端出现
阅读:7
作者:Christodoulou Neophytos, Skourides Paris A
| 期刊: | Nature Communications | 影响因子: | 15.700 |
| 时间: | 2025 | 起止号: | 2025 Jul 19; 16(1):6650 |
| doi: | 10.1038/s41467-025-61610-7 | 研究方向: | 发育与干细胞、细胞生物学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
