The medial prefrontal cortex (mPFC) and hippocampus are critical for memory retrieval, decision making, and emotional regulation. While ventral CA1 (vCA1) shows direct and reciprocal connections with mPFC, dorsal CA1 (dCA1) forms indirect pathways to mPFC, notably via the thalamic reuniens nucleus (Re). Neuroanatomical tracing has documented structural connectivity of this indirect pathway through Re however, its functional operation is largely unexplored. Here, we used in vivo and in vitro electrophysiology along with optogenetics to address this question. Whole-cell patch-clamp recordings in acute mouse brain slices revealed both monosynaptic excitatory responses and disynaptic feedforward inhibition at Re-mPFC synapses. However, we also identified a prolonged excitation of mPFC by Re. These early monosynaptic and late recurrent components are in marked contrast to the primarily feedforward inhibition characteristic of thalamic inputs to the neocortex. Local field potential recordings in mPFC brain slices revealed prolonged synaptic activity throughout all cortical lamina upon Re activation, with the late excitation enhanced by blockade of parvalbumin neurons and GABA(A)Rs. In vivo Neuropixels recordings in head-fixed awake mice revealed a similar prolonged excitation of mPFC units by Re activation. In summary, Re output produces recurrent feedforward excitation within mPFC suggesting a potent amplification system in the Re-mPFC network. This may facilitate amplification of dCA1->mPFC signals for which Re acts as the primary conduit, as there is little direct connectivity. In addition, the capacity of mPFC neurons to fire bursts of action potentials in response to Re input suggests that these synapses have a high gain.
The reuniens thalamus recruits recurrent excitation in the medial prefrontal cortex.
丘脑联合部可引起内侧前额叶皮层的反复兴奋
阅读:11
作者:Vantomme Gil, Devienne Gabrielle, Hull Jacob M, Huguenard John R
| 期刊: | Proceedings of the National Academy of Sciences of the United States of America | 影响因子: | 9.100 |
| 时间: | 2025 | 起止号: | 2025 Mar 18; 122(11):e2500321122 |
| doi: | 10.1073/pnas.2500321122 | 研究方向: | 其它 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
