The reuniens thalamus recruits recurrent excitation in the medial prefrontal cortex.

阅读:2
作者:Vantomme Gil, Devienne Gabrielle, Hull Jacob M, Huguenard John R
The medial prefrontal cortex (mPFC) and hippocampus are critical for memory retrieval, decision making, and emotional regulation. While ventral CA1 (vCA1) shows direct and reciprocal connections with mPFC, dorsal CA1 (dCA1) forms indirect pathways to mPFC, notably via the thalamic reuniens nucleus (Re). Neuroanatomical tracing has documented structural connectivity of this indirect pathway through Re however, its functional operation is largely unexplored. Here, we used in vivo and in vitro electrophysiology along with optogenetics to address this question. Whole-cell patch-clamp recordings in acute mouse brain slices revealed both monosynaptic excitatory responses and disynaptic feedforward inhibition at Re-mPFC synapses. However, we also identified a prolonged excitation of mPFC by Re. These early monosynaptic and late recurrent components are in marked contrast to the primarily feedforward inhibition characteristic of thalamic inputs to the neocortex. Local field potential recordings in mPFC brain slices revealed prolonged synaptic activity throughout all cortical lamina upon Re activation, with the late excitation enhanced by blockade of parvalbumin neurons and GABA(A)Rs. In vivo Neuropixels recordings in head-fixed awake mice revealed a similar prolonged excitation of mPFC units by Re activation. In summary, Re output produces recurrent feedforward excitation within mPFC suggesting a potent amplification system in the Re-mPFC network. This may facilitate amplification of dCA1->mPFC signals for which Re acts as the primary conduit, as there is little direct connectivity. In addition, the capacity of mPFC neurons to fire bursts of action potentials in response to Re input suggests that these synapses have a high gain.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。