Investigation of the mechanism by which miR-223-3p inhibits reflux esophagitis through targeting the NLRP3 inflammasome.

研究 miR-223-3p 通过靶向 NLRP3 炎症小体抑制反流性食管炎的机制

阅读:10
作者:Lin Shuying, Zheng Binbin, Wu Ruchen, Wu Qiuli, Chen Xiangbo
BACKGROUND: Reflux esophagitis is a common gastrointestinal disorder characterized by significant inflammatory responses. The NLRP3 inflammasome plays a crucial role in inflammation, and miR- 223 - 3p has been found to inhibit its expression by targeting NLRP3 mRNA. This study aims to further investigate the mechanism by which miR- 223 - 3p inhibits reflux esophagitis through targeting the NLRP3 inflammasome. METHODS: A reflux esophagitis cell model was constructed to assess the expression levels of miR- 223 - 3p and NLRP3. Overexpression and inhibition techniques were used to study the effects of miR- 223 - 3p on the NLRP3 inflammasome. qPCR and Western blot analyses were employed to detect the expression of related inflammatory factors, and flow cytometry was used to assess cell apoptosis and cell cycle changes. RESULTS: The study found that miR- 223 - 3p was significantly downregulated in the reflux esophagitis model, while NLRP3 and its downstream inflammatory factors were significantly upregulated. Overexpression of miR- 223 - 3p markedly inhibited NLRP3 expression, reduced the release of inflammatory factors, decreased cell apoptosis, promoted cell cycle progression, and enhanced cell viability. Overexpression of NLRP3 reversed these protective effects of miR- 223 - 3p, further confirming that miR- 223 - 3p alleviates inflammation by inhibiting the activation of the NLRP3 inflammasome. CONCLUSION: This study demonstrates that miR- 223 - 3p plays a key role in reducing inflammation and cellular damage in reflux esophagitis by targeting the NLRP3 inflammasome. These findings provide new insights and potential therapeutic targets for the treatment of reflux esophagitis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。