The lateral habenula (LHb) is a key brain structure that receives input from higher brain regions and regulates monoaminergic activity. LHb hyperactivity has been implicated in the pathophysiology of depression, but the electrophysiological mechanisms underlying this hyperactivity remain poorly understood. To address this issue, we investigated how chronic stress alters the firing properties of LHb neurons in a mouse model of chronic social defeat. Whole-cell recordings were conducted from LHb neurons in the mouse acute brain slices. LHb neurons exhibited two types of rebound depolarizing potentials (RDPs) after the offset of hyperpolarization: short-RDPs (lasting <400Â ms) and long-RDPs (order of seconds). Stress-susceptible mice showed a significantly reduced occurrence of long-RDPs, whereas spike firing in response to depolarizing current injections remained unchanged. Both short- and long-RDPs were triggered by T-type voltage-dependent Ca(2+) channels and shortened by small-conductance Ca(2+)-activated K(+) (SK) channels. The prolonged depolarizing phase of long-RDPs was mediated by cyclic nucleotide-gated (CNG) channels, which were activated via electrical coupling formed between neurons and non-neuronal cells. Whole-cell recording using an internal solution including a gap junction-permeable dye revealed that neurons formed dye coupling with non-neuronal cells, including oligodendrocytes and/or oligodendrocyte precursor cells. RNA-sequencing and genome editing experiments suggested that Cnga4, a CNG channel subtype, was the primary candidate for the long depolarizing phase of long-RDP, and its expression was decreased in the stress-susceptible mice. These findings suggest that stress-dependent changes in the firing activity of neurons are regulated by neuron-non-neuron networks formed in the LHb. KEY POINTS: Mouse lateral habenular (LHb) neurons exhibit short (<400Â ms) rebound depolarizing potentials (short-RDPs) or long-RDPs (order of seconds) (long-RDPs) after the offset of hyperpolarization. The incidence of long-RDP neurons is significantly reduced in mice susceptible to chronic social defeat stress. The long depolarizing phase of long-RDPs is mediated by cyclic nucleotide-gated (CNG) channels, which are activated in non-neuronal cells via gap junctions. The expression of Cnga4, the gene encoding a subtype of the CNG channel, is decreased in the stress-susceptible mice. These results help us understand the mechanisms underlying stress-induced electrophysiological changes in LHb neurons and the functional roles of neuron-non-neuron networks for these neurons.
Neuron-non-neuron electrical coupling networks are involved in chronic stress-induced electrophysiological changes in lateral habenular neurons.
神经元-非神经元电耦合网络参与了慢性应激引起的外侧缰核神经元的电生理变化
阅读:7
作者:Yamaoka Kenji, Nozaki Kanako, Zhu Meina, Terai Haruhi, Kobayashi Kenta, Ito Hikaru, Matsumata Miho, Takemoto Hidenori, Ikeda Shinya, Sotomaru Yusuke, Mori Tetsuji, Aizawa Hidenori, Hashimoto Kouichi
| 期刊: | Journal of Physiology-London | 影响因子: | 4.400 |
| 时间: | 2025 | 起止号: | 2025 May;603(9):2713-2740 |
| doi: | 10.1113/JP287286 | 研究方向: | 神经科学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
