The global spread, frequent antigenic changes, and pandemic potential of clade 2.3.4.4b highly pathogenic avian influenza H5N1 underscore the urgent need for robust cross-protective vaccines. Here, we developed a clade 2.3.4.4b H5N1 whole inactivated virus (WIV) vaccine strain with improved structural stability, productivity, and safety. By analyzing the evolutionary trends of clade 2.3.4.4b H5N1 viruses, we identified a key mutation (R90K) that increases heat stability while preserving antigenicity. Additionally, the PB2 gene of PR8 was replaced with a prototypical avian PB2 gene to increase replication efficiency in embryonated chicken eggs and reduce replication efficiency in mammalian cells, thereby improving productivity and biosafety. We found that our optimized clade 2.3.4.4b H5N1 vaccine strain (22W_KY), inactivated with binary ethylenimine (BEI), had superior antigen internalization into respiratory epithelial cells compared to those inactivated with formaldehyde or beta-propiolactone. Following intranasal administration to mice, the BEI-inactivated 22W_KY also elicited significantly stronger systemic IgG, mucosal IgA, and T-cell responses, especially in the lungs. Protective efficacy studies revealed that the BEI-inactivated 22W_KY vaccine provided complete protection against heterologous viral challenges and significant protection against heterosubtypic viral challenges, with no weight loss and complete suppression of the viral load in the respiratory tract in 2 of 3 mice. These results indicate that the BEI-inactivated 22W_KY vaccine could serve as a promising candidate for a safe, stable, cost-efficient, and broadly protective intranasal influenza vaccine against zoonotic and pandemic threats.
Intranasally administered whole virion inactivated vaccine against clade 2.3.4.4b H5N1 influenza virus with optimized antigen and increased cross-protection.
鼻内给药的针对 2.3.4.4b 分支 H5N1 流感病毒的全病毒颗粒灭活疫苗,具有优化的抗原和增强的交叉保护作用
阅读:6
作者:Song Jin-Ha, Son Seung-Eun, Kim Ho-Won, Kim Seung-Ji, An Se-Hee, Lee Chung-Young, Kwon Hyuk-Joon, Choi Kang-Seuk
| 期刊: | Virology Journal | 影响因子: | 3.800 |
| 时间: | 2025 | 起止号: | 2025 May 5; 22(1):131 |
| doi: | 10.1186/s12985-025-02760-4 | 研究方向: | 炎症/感染 |
| 疾病类型: | 流感 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
