LPA released from dying cancer cells after chemotherapy inactivates Hippo signaling and promotes pancreatic cancer cell repopulation.

阅读:2
作者:Liu Yuzhi, Ding Jie, Li Shumin, Jiang Anyi, Chen Zhiqin, Quan Ming
PURPOSE: The Hippo pathway in the tumorigenesis and progression of PDAC, with lysophosphatidic acid (LPA) regulating the Hippo pathway to facilitate cancer progression. However, the impact of the Hippo signaling pathway on tumor repopulation in PDAC remains unreported. METHODS: Direct and indirect co-culture models to investigate gemcitabine-induced apoptotic cells can facilitate the repopulation of residual tumor cells. Mass spectrometry analysis was conducted to assess the impact of gemcitabine treatment on the lipid metabolism of pancreatic cancer cells. ELISA assays confirmed gemcitabine promotes the release of LPA from apoptotic pancreatic cancer cells. The expression of Yes-associated protein 1 (YAP1) elucidated the underlying mechanism by which dying cells induce tumor repopulation using qRT-PCR and Western blot. We studied the biological function of pancreatic cancer cells using CCK-8, colony formation, and transwell invasion assays in vitro. Co-culture models were used to validate the impact of Hippo pathway on tumor repopulation, while flow cytometry was employed to assess the sensitivity of pancreatic cancer cells to gemcitabine in the context of Hippo pathway. RESULTS: Gemcitabine-induced dying cells released LPA in a dose-dependent manner, which promoted the proliferation, clonal formation, and invasion of pancreatic cancer cells. Mechanistic studies showed that gemcitabine and LPA facilitated the translocation of YAP1 and induced the inactivation of the Hippo pathway. YAP1 overexpression significantly enhanced the activity of autotaxin, leading to stimulated pancreatic cancer cells to secrete LPA. This mechanism orchestrated a self-sustaining LPA-Hippo feedback loop, which drove the repopulation of residual tumor cells. Simultaneously, it was observed that suppressing LPA and YAP1 expression enhanced the sensitivity of pancreatic cancer cells to gemcitabine. CONCLUSION: Our investigation indicated that targeting the LPA-YAP1 signaling pathway could serve as a promising strategy to augment the overall therapeutic efficacy against PDAC.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。