Acid-sensing ion channel 1a promotes alcohol-associated liver disease in mice via regulating endoplasmic reticulum autophagy.

酸敏感离子通道 1a 通过调节内质网自噬促进小鼠酒精相关性肝病

阅读:9
作者:Zhu Yue-Qin, Wang Li-Li, Li Zi-Hao, Qian Shi-Shun, Xu Zhou, Zhang Jin, Song Yong-Hu, Pan Xue-Sheng, Du Na, Abou-Elnour Amira, Tay Lynn Jia, Zhang Jing-Rong, Li Meng-Xue, Shen Yu-Xian, Huang Yan
Alcohol-associated liver disease (ALD) is a hepatocyte dysfunction disease caused by chronic or excessive alcohol consumption, which can lead to extensive hepatocyte necrosis and even liver failure. Currently, the pathogenesis of ALD and the anti-ALD mechanisms have not been fully elucidated yet. In this study, we investigated the effects of endoplasmic reticulum autophagy (ER-phagy) in ALD and the role of acid-sensing ion channel 1a (ASIC1a) in ER stress-mediated ER-phagy. A mouse model of ALD was established using the Gao-Binge method and the AML12 cell line treated with alcohol was used as an in vitro model. We showed that ASIC1a expression was significantly increased and ER-phagy was activated in both the in vivo and in vitro models. In alcohol-treated AML12 cells, we showed that blockade of ASIC1a with PcTx-1 or knockdown of ASIC1a reduced alcohol-induced intracellular Ca(2+) accumulation and ER stress. In addition, inhibition of ER stress with 4-PBA reduced the level of ER-phagy. Furthermore, knockdown of the ER-phagy receptor family with sequence similarity 134 member B (FAM134B) alleviated alcohol-triggered hepatocyte injury and apoptosis. In conclusion, this study demonstrates that alcohol activates ER stress-induced ER-phagy and liver injury by increasing ASIC1a expression and ASIC1a-mediated Ca(2+) influx, providing a novel strategy for the treatment of ALD.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。