Drug and siRNA screens identify ROCK2 as a therapeutic target for ciliopathies.

药物和siRNA筛选确定ROCK2是纤毛病的一种治疗靶点

阅读:12
作者:Smith Claire E L, Streets Andrew J, Lake Alice V R, Natarajan Subaashini, Best Sunayna K, Szymanska Katarzyna, Karwatka Magdalena, Stevenson Thomas, Trowbridge Rachel, Grant Gary, Grellscheid Sushma N, Foster Richard, Morrison Ciaran G, Mavria Georgia, Bond Jacquelyn, Ong Albert C M, Johnson Colin A
BACKGROUND: Primary cilia mediate vertebrate development and growth factor signalling. Defects in primary cilia cause inherited developmental conditions termed ciliopathies. Ciliopathies often present with cystic kidney disease, a major cause of early renal failure. Currently, only one drug, Tolvaptan, is licensed to slow the decline of renal function for the ciliopathy polycystic kidney disease. Novel therapeutic interventions are needed. METHODS: We screened clinical development compounds to identify those that reversed cilia loss due to siRNA knockdown. In parallel, we undertook a whole genome siRNA-based reverse genetics phenotypic screen to identify positive modulators of cilia formation. RESULTS: Using a clinical development compound screen, we identify fasudil hydrochloride. Fasudil is a generic, off-patent drug that is a potent, broadly selective Rho-associated coiled-coil-containing protein kinase (ROCK) inhibitor. In parallel, the siRNA screen identifies ROCK2 and we demonstrate that ROCK2 is a key mediator of cilium formation and function through its possible effects on actin cytoskeleton remodelling. CONCLUSIONS: Our results indicate that specific ROCK2 inhibitors (e.g. belumosudil) could be repurposed for cystic kidney disease treatment. We propose that ROCK2 inhibition represents a novel, disease-modifying therapeutic approach for heterogeneous ciliopathies.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。