Oxidative Phosphorylation Is a Metabolic Vulnerability of Endocrine Therapy-Tolerant Persister Cells in ER+ Breast Cancer.

阅读:2
作者:Tau Steven, Chamberlin Mary D, Yang Huijuan, Marotti Jonathan D, Muskus Patricia C, Roberts Alyssa M, Carmichael Melissa M, Cressey Lauren, Dragnev Christo Philip C, Demidenko Eugene, Hampsch Riley A, Soucy Shannon M, Kolling Fred W, Samkoe Kimberley S, Alvarez James V, Kettenbach Arminja N, Miller Todd W
Despite adjuvant treatment with endocrine therapies, estrogen receptor-positive (ER+) breast cancers recur in a significant proportion of patients. Recurrences are attributable to clinically undetectable endocrine-tolerant persister cancer cells that retain tumor-forming potential. Therefore, strategies targeting such persister cells may prevent recurrent disease. Using CRISPR-Cas9 genome-wide knockout screening in ER+ breast cancer cells, we identified a survival mechanism involving metabolic reprogramming with reliance upon mitochondrial respiration in endocrine-tolerant persister cells. Quantitative proteomic profiling showed reduced levels of glycolytic proteins in persisters. Metabolic tracing of glucose revealed an energy-depleted state in persisters, in which oxidative phosphorylation was required to generate ATP. A phase II clinical trial was conducted to evaluate changes in mitochondrial markers in primary ER+/HER2- breast tumors induced by neoadjuvant endocrine therapy (NCT04568616). In an analysis of tumor specimens from 32 patients, tumors exhibiting residual cell proliferation after aromatase inhibitor-induced estrogen deprivation with letrozole showed increased mitochondrial content. Genetic profiling and barcode lineage tracing showed that endocrine-tolerant persistence occurred stochastically without genetic predisposition. Pharmacologic inhibition of mitochondrial complex I suppressed the tumor-forming potential of persisters in mice and synergized with the antiestrogen drug fulvestrant to induce regression of patient-derived xenografts. These findings indicate that mitochondrial metabolism is essential in endocrine-tolerant persister ER+ breast cancer cells and warrant the development of treatment strategies to leverage this vulnerability for treating breast cancer. Significance: Persister cancer cells that survive endocrine therapy exhibit increased energetic dependence upon mitochondria for survival and tumor regrowth potential, indicating that therapies targeting this metabolic dependency could help prevent disease recurrence.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。