Hepatic-specific vitamin D receptor downregulation alleviates aging-related metabolic dysfunction-associated steatotic liver disease.

阅读:2
作者:Zhu Feng, Lin Bing-Ru, Lin Shi-Hua, Yu Chao-Hui, Yang Yun-Mei
BACKGROUND: Metabolic dysfunction-associated steatotic liver disease (MASLD) is defined by the abnormal lipid deposition in hepatocytes. The prevalence of MASLD is significantly increased in the elderly population, suggesting that aging may be related to the occurrence of MASLD. Emerging evidences suggest that vitamin D receptor (VDR) may be implicated in the progression of MASLD. Therefore, additional researches are warranted to elucidate whether VDR plays a role in aging-related MASLD. AIM: To investigate the relationship between aging and MASLD and explore the role and related mechanisms of VDR in aging-related MASLD. METHODS: Cellular senescence models were established, and the senescence phenotype of telomerase RNA component knockout mice was validated. These mice were then used as a senescence model for subsequent studies. Changes in VDR expression in the livers of aging mice were examined. VDR knockdown models, including cell knockdown models and hepatic-specific VDR knockout mice, were constructed, and MASLD was established in these models. Additionally, vitamin D (VD)-supplemented models, including senescent liver cell lines and senescent mice, were constructed. RESULTS: The steatosis in senescent liver cells was more severe than in normal cells (P < 0.05). Moreover, hepatic steatosis was significantly more pronounced in senescence model mice compared to control group when the MASLD model was successfully induced (P < 0.05). Therefore, we concluded that aging aggravated hepatic steatosis. The hepatic expression of VDR increased after aging. VDR knockdown in senescent liver cells and senescent mice alleviated hepatic steatosis (P < 0.05). When senescent liver cells were stimulated with VD, cellular steatosis was aggravated (P < 0.05). However, VD supplementation had no effect on aging mice. CONCLUSION: Aging can lead to increased hepatic steatosis, and the hepatic-specific knockdown of VDR alleviated aging-related MASLD. VDR could serve as a potential molecular target for aging-related MASLD.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。