BACKGROUND: Recent studies have revealed importance of human umbilical cord blood (HUCB)-derived exosomes (HUCB-Exo) in central nervous system diseases, but the role of HUCB-Exo in hypoxic-ischemic encephalopathy (HIE) remains unclear. This study aims to explore the mechanisms of HUCB-Exo in HIE. METHODS: HIE models were constructed in 7-day-old neonatal rats using classical Rice-Vannucci modeling, and SH-SY5Y cells were induced by oxygen-glucose deprivation/reperfusion (OGD/R) injury, followed by intervention with HUCB and HUBC-Exo, either non-transfected or transfected with si-NC/si-MFG-E8. RESULTS: HUBC-Exo decreased cerebral infarct size and cerebral water content in HIE neonatal rats and improved short-term and long-term neurological function. HUBC-Exo down-regulated Beclin1, ATG7, and LC3 II/I expression, while promoting p62 expression in HIE neonatal rats. After HUBC-Exo treatment, NCOA4 and ACSL4 expression in HIE neonatal rats decreased, while FTH1, SLC7A11, and GPX4 expression were increased. In addition, HUBC-Exo decreased Fe(2+), MDA, and ROS levels in HIE neonatal rats. Similarly, these in vivo results were observed in vitro. HUBC-Exo inhibited autophagy and ferroptosis in OGD/R-induced SH-SY5Y cells, and MFG-E8 silencing interrupted HUBC-Exo action. Further results showed that HUBC-Exo-derived MFG-E8 promoted p-GSK3β/GSK3β and Active-β-catenin/β-catenin levels in OGD/R-induced SH-SY5Y cells. Importantly, the GSK3β agonist LiCl revoked the promotion of HUBC-Exo(si-MFG-E8) on autophagy and ferroptosis in OGD/R-induced SH-SY5Y cells. HUBC-Exo MFG-E8 inhibited autophagy and ferroptosis, thereby alleviating brain damage in HIE neonatal rats. CONCLUSION: Our results suggested that HUBC-Exo-transmitted MFG-E8 inhibited autophagy and ferroptosis through GSK3β/β-catenin signaling, thereby alleviating brain injury in HIE neonatal rats, which provided a new idea for treating HIE.
The umbilical cord blood exosome MFG-E8 alleviates hypoxic-ischemic encephalopathy brain injury in neonatal rats by restoring autophagy flux and inhibiting ferroptosis through GSK3β/β-catenin signaling.
脐带血外泌体 MFG-E8 通过 GSK3β/β-catenin 信号传导恢复自噬通量并抑制铁死亡,从而减轻新生大鼠缺氧缺血性脑病脑损伤
阅读:9
作者:Zhao Menghua, Wu Yizhong, Huang Li, Wang Juanmei, Zhang Aimin
| 期刊: | Regenerative Therapy | 影响因子: | 3.500 |
| 时间: | 2025 | 起止号: | 2025 Jul 4; 30:321-332 |
| doi: | 10.1016/j.reth.2025.06.016 | 种属: | Rat |
| 研究方向: | 信号转导 | 信号通路: | Autophagy |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
