The role and mechanism of the cGAS-STING pathway-mediated ROS in apoptosis and ferroptosis induced by manganese exposure.

锰暴露诱导细胞凋亡和铁死亡中 cGAS-STING 通路介导的 ROS 的作用和机制

阅读:9
作者:Zhang Zhimin, Yang Jirui, Zhou Qiongli, Zhong Shiyin, Luo Jinghao, Chai Xueting, Liu Jingjing, Zhang Xin, Chang Xuhong, Wang Hui
Environmental exposure to elevated manganese (Mn) levels is significantly associated with neurocognitive deficits, attracting widespread attention, yet its underlying mechanisms remain incompletely defined. Ferroptosis is recognized as a crucial contributor to cognitive impairments. Our study demonstrates that Mn exposure activates the cGAS-STING pathway, mediating reactive oxygen species (ROS) generation and subsequently inducing apoptosis and ferroptosis. Mechanistically, Mn-induced cGAS-STING activation promotes oxidative stress, characterized by increased ROS and malondialdehyde (MDA) production, alongside diminished glutathione peroxidase (GSH-Px) and superoxide dismutase (SOD) activities. Furthermore, this activated pathway triggers apoptosis by mediating ROS-dependent alterations in Bax/Bcl-2 expression and Cytochrome C (Cyt C) release from mitochondria. In addition, excessive activation of the cGAS-STING pathway drives ROS accumulation, which impairs iron homeostasis and induces ferroptosis by regulating the expression of solute carrier family 7 member 11 (SLC7A11), glutathione peroxidase 4 (GPX4), ferroptosis suppressor protein 1 (FSP1), dihydroorotate dehydrogenase (DHODH), and acyl-CoA synthetase long-chain family member 4 (ACSL4). Critically, inhibition of either the cGAS-STING pathway or ROS significantly ameliorated Mn-induced oxidative stress, apoptosis, and ferroptosis. Overall, these findings establish that cGAS-STING pathway activation mediates ROS production, leading to apoptosis and ferroptosis, as an essential mechanism of Mn neurotoxicity. Consequently, targeting the cGAS-STING pathway or ROS represents a promising therapeutic strategy for mitigating Mn neurotoxicity.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。