Environmental exposure to elevated manganese (Mn) levels is significantly associated with neurocognitive deficits, attracting widespread attention, yet its underlying mechanisms remain incompletely defined. Ferroptosis is recognized as a crucial contributor to cognitive impairments. Our study demonstrates that Mn exposure activates the cGAS-STING pathway, mediating reactive oxygen species (ROS) generation and subsequently inducing apoptosis and ferroptosis. Mechanistically, Mn-induced cGAS-STING activation promotes oxidative stress, characterized by increased ROS and malondialdehyde (MDA) production, alongside diminished glutathione peroxidase (GSH-Px) and superoxide dismutase (SOD) activities. Furthermore, this activated pathway triggers apoptosis by mediating ROS-dependent alterations in Bax/Bcl-2 expression and Cytochrome C (Cyt C) release from mitochondria. In addition, excessive activation of the cGAS-STING pathway drives ROS accumulation, which impairs iron homeostasis and induces ferroptosis by regulating the expression of solute carrier family 7 member 11 (SLC7A11), glutathione peroxidase 4 (GPX4), ferroptosis suppressor protein 1 (FSP1), dihydroorotate dehydrogenase (DHODH), and acyl-CoA synthetase long-chain family member 4 (ACSL4). Critically, inhibition of either the cGAS-STING pathway or ROS significantly ameliorated Mn-induced oxidative stress, apoptosis, and ferroptosis. Overall, these findings establish that cGAS-STING pathway activation mediates ROS production, leading to apoptosis and ferroptosis, as an essential mechanism of Mn neurotoxicity. Consequently, targeting the cGAS-STING pathway or ROS represents a promising therapeutic strategy for mitigating Mn neurotoxicity.
The role and mechanism of the cGAS-STING pathway-mediated ROS in apoptosis and ferroptosis induced by manganese exposure.
锰暴露诱导细胞凋亡和铁死亡中 cGAS-STING 通路介导的 ROS 的作用和机制
阅读:9
作者:Zhang Zhimin, Yang Jirui, Zhou Qiongli, Zhong Shiyin, Luo Jinghao, Chai Xueting, Liu Jingjing, Zhang Xin, Chang Xuhong, Wang Hui
| 期刊: | Redox Biology | 影响因子: | 11.900 |
| 时间: | 2025 | 起止号: | 2025 Sep;85:103761 |
| doi: | 10.1016/j.redox.2025.103761 | 研究方向: | 细胞生物学 |
| 信号通路: | Apoptosis | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
