Dynamics of the mitochondrial reticulum in live cells using Fourier imaging correlation spectroscopy and digital video microscopy.

利用傅里叶成像相关光谱和数字视频显微镜研究活细胞中线粒体的动态变化

阅读:3
作者:Margineantu D, Capaldi R A, Marcus A H
We report detailed studies of the dynamics of the mitochondrial reticulum in live cells using two independent experimental techniques: Fourier imaging correlation spectroscopy and digital video fluorescence microscopy. When both methods are used to study the same system, it is possible to directly compare measurements of preaveraged statistical dynamical quantities with their microscopic counterparts. This approach allows the underlying mechanism of the observed rates to be determined. Our results indicate that the dynamics of the reticulum structure is composed of two independent contributions, each important on very different time and length scales. During short time intervals (1-15 sec), local regions of the reticulum primarily undergo constrained thermally activated motion. During long time intervals (>15 sec), local regions of the reticulum undergo long-range "jump" motions that are associated with the action of cytoskeletal filaments. Although the frequency of the jumps depend on the physiological state of the cells, the average jump distance ( approximately 0.8 microm) is unaffected by metabolic activity. During short time intervals, the dynamics appear to be spatially heterogeneous, whereas the cumulative effect of the infrequent jumps leads to the appearance of diffusive motion in the limit of long time intervals.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。