Bioinformatics, as a relatively young discipline, has grown up in a world of high-throughput large volume data that requires automatic analysis to enable us to stay on top of it all. As a response, the bioinformatics discipline has developed strategies to find patterns in a 'low signal : noise ratio' environment. While the need to process large amounts of information and extract hypotheses is both laudable and inescapable, the pressures that such requirements have introduced can lead to short cuts and misapprehensions. This is particularly the case with reference to assumptions about the underlying evolutionary theories that are implicitly invoked by the algorithms utilised in the analysis pipelines. The classic example is the misuse of the term 'homologous' to mean 'similar' or even 'functionally similar', rather than the correct definition of 'having the same evolutionary origin', which may or may not imply similarity of function. In this review, we outline some of the common phylogenetic questions from a bioinformatics perspective that can be better addressed with a deeper understanding of evolutionary principles and show, with examples from the amidohydrolase and Toll families, that quite different conclusions can be drawn if such approaches are taken. This review focuses on the importance of the underlying evolutionary biology, rather than assessing the merits of different phylogenetic techniques. The relative merits of a priori and a posteriori inclusion of biological information are discussed.
Phylogenetics in the bioinformatics culture of understanding.
生物信息学理解文化中的系统发育学
阅读:4
作者:Allaby Robin G, Woodwark Mathew
| 期刊: | Comparative and Functional Genomics | 影响因子: | 0.000 |
| 时间: | 2004 | 起止号: | 2004;5(2):128-46 |
| doi: | 10.1002/cfg.381 | 研究方向: | 发育与干细胞 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
