Saccharomyces cerevisiae wild-type (BY4741) and the corresponding mutant lacking the plasma membrane main potassium uptake systems (trk1,trk2) were used to analyze the consequences of K(+) starvation following a proteomic approach. In order to trigger high-affinity mode of potassium transport, cells were transferred to potassium-free medium. Protein profile was followed by two-dimensional (2-D) gels in samples taken at 0, 30, 60, 120, 180, and 300 min during starvation. We observed a general decrease of protein content during starvation that was especially drastic in the mutant strain as it was the case of an important number of proteins involved in glycolysis. On the contrary, we identified proteins related to stress response and alternative energetic metabolism that remained clearly present. Neural network-based analysis indicated that wild type was able to adapt much faster than the mutant to the stress process. We conclude that complete potassium starvation is a stressful process for yeast cells, especially for potassium transport mutants, and we propose that less stressing conditions should be used in order to study potassium homeostasis in yeast.
Adaptation to potassium starvation of wild-type and K(+)-transport mutant (trk1,2) of Saccharomyces cerevisiae: 2-dimensional gel electrophoresis-based proteomic approach.
酿酒酵母野生型和 K(+)-转运突变体 (trk1,2) 对钾饥饿的适应性:基于二维凝胶电泳的蛋白质组学方法
阅读:5
作者:Gelis Samuel, Curto Miguel, Valledor Luis, González Asier, Ariño JoaquÃn, JorrÃn Jesús, Ramos José
| 期刊: | Microbiologyopen | 影响因子: | 4.600 |
| 时间: | 2012 | 起止号: | 2012 Jun;1(2):182-93 |
| doi: | 10.1002/mbo3.23 | 研究方向: | 其它 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
