Cell-cell communication-mediated cell-type-specific parent-of-origin effects in mammals.

哺乳动物中细胞间通讯介导的细胞类型特异性亲本来源效应

阅读:10
作者:Wu Jia-Jin, Zheng Enqin, Liu Langqing, Quan Jianping, Ruan Donglin, Yao Zekai, Yang Jifei, Li Xuehua, Wang Shiyuan, Yang Ming, Zhang Zebin, Lin Meng, Xu Zheng, Li Zicong, Cai Gengyuan, Yang Jie, Wu Zhenfang
Genomic imprinting is manifested as monoallelic expression of genes according to parental origin, which is closely linked to mammalian placentation and human diseases. Yet, it is unclear how genomic imprinting evolves in different cell types. Here we generate a single-nucleus transcriptomic landscape of mammalian placental development, identifying 5 major cell types and 14 trophoblast subtypes. By developing a framework for integrating the datasets of single-nucleus transcriptome and whole-genome variations from reciprocal crosses of the genetically distinct Duroc and Lulai pig breeds, we construct a cell-type-specific genomic imprinting landscape, uncovering 118 candidate imprinted genes. We expand the mammalian imprinting gene catalog by identifying 97 previously uncharacterized imprinted candidates. Nearly 75% of imprinted candidates exhibit a cell-type- and developmental-stage-dependent manner. Through cross-species analysis, we show that cell-cell communication, especially the integration and modification of signaling pathways into a cell-type-specific autocrine network, drives biased allelic expression of imprinted genes in pigs, mice, and humans. Our findings provide genetic and molecular insights into parent-of-origin effects on gene expression, offering an in-depth understanding of genomic imprinting in mammals.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。