Constructed transferrin receptor-targeted liposome for the delivery of fluvoxamine to improve prognosis in a traumatic brain injury mouse model.

构建转铁蛋白受体靶向脂质体,用于递送氟伏沙明,以改善创伤性脑损伤小鼠模型的预后

阅读:13
作者:Mi Liang, Yuan Jiangyuan, Jiang Yuxing, Hu Yuqian, Lv Chuanxiang, Xu Yongqiang, Liu Mingqi, Liu Tao, Liu Xuanhui, Huang Jinhao, Jiang Rongcai, Quan Wei
The dysregulation of blood-brain barrier (BBB) activates pathological mechanisms such as neuroinflammation after traumatic brain injury (TBI), and glymphatic system dysfunction accelerates toxic waste accumulation after TBI. It is essential to find an effective way to inhibit inflammation and repair BBB and glymphatic system after TBI; however, effective and lasting drug therapy remains challenging because BBB severely prevents drugs from being delivered to central nervous system. Transferrin receptors (TfRs) are mainly expressed on brain capillary endothelial cells. Here, we report a TfR-targeted nanomedicine for TBI treatment by penetrating BBB and delivering fluvoxamine (Flv). The TfR-targeted polypeptide liposome loaded with Flv (TPL-Flv) implements cell targeting ability on human umbilical vein endothelial cells (HUVECs) in vitro detected by flow cytometry, and drug safety was proved through cell viability analysis and blood routine and biochemistry analysis. Afterwards, we established a controlled cortical impact model to explore TPL-Flv administration effects on TBI mice. We confirmed that TPL-Flv could stimulate CXCR4/SDF-1 signaling pathway, activate Treg cells, and inhibit inflammation after TBI. TPL-Flv treatment also alleviated BBB disruption and restored aquaporin-4 (AQP4) polarization, as well as reversed glymphatic dysfunction. Furthermore, TPL-Flv accomplished remarkable improvement of motor and cognitive functions. These findings demonstrate that TPL-Flv can effectively cross BBB and achieve drug delivery to cerebral tissue, validating its potential to improve therapeutic outcomes for TBI.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。