Endothelial GSDMD underlies LPS-induced systemic vascular injury and lethality.

内皮细胞 GSDMD 是 LPS 诱导的全身血管损伤和死亡的根本原因

阅读:4
作者:Su Enyong, Song Xiaoyue, Wei Lili, Xue Junqiang, Cheng Xuelin, Xie Shiyao, Jiang Hong, Liu Ming
Endothelial injury destroys endothelial barrier integrity, triggering organ dysfunction and ultimately resulting in sepsis-related death. Considerable attention has been focused on identifying effective targets for inhibiting damage to endothelial cells to treat endotoxemia-induced septic shock. Global gasdermin D (Gsdmd) deletion reportedly prevents death caused by endotoxemia. However, the role of endothelial GSDMD in endothelial injury and lethality in lipopolysaccharide-induced (LPS-induced) endotoxemia and the underlying regulatory mechanisms are unknown. Here, we show that LPS increases endothelial GSDMD level in aortas and lung microvessels. We demonstrated that endothelial Gsdmd deficiency, but not myeloid cell Gsdmd deletion, protects against endothelial injury and death in mice with endotoxemia or sepsis. In vivo experiments suggested that hepatocyte GSDMD mediated the release of high-mobility group box 1, which subsequently binds to the receptor for advanced glycation end products in endothelial cells to cause systemic vascular injury, ultimately resulting in acute lung injury and lethality in shock driven by endotoxemia or sepsis. Additionally, inhibiting endothelial GSDMD activation via a polypeptide inhibitor alleviated endothelial damage and improved survival in a mouse model of endotoxemia or sepsis. These data suggest that endothelial GSDMD is a viable pharmaceutical target for treating endotoxemia and endotoxemia-induced sepsis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。