Extracellular vesicles (EVs), ubiquitous in peripheral blood and bodily fluids, are important regulators of neuronal communication, facilitating the intercellular transfer of bioactive molecules crucial for maintaining homeostasis. Uncovering EV-mediated mechanisms is pivotal for Parkinson's disease (PD) therapy. tRNA-derived fragments (tRFs) are a novel class of small non-coding RNAs found in EVs. They are essential for gene regulation, directly binding to target mRNAs to inhibit their translation, and hold promise as innovative therapeutic targets. We isolated EVs from the serum of patients with PD (PD-EVs) and co-cultured them with microglial cells to systematically investigate the modulation of inflammatory mediators and autophagy-related proteins. Small-RNA sequencing was performed to identify significantly differentially expressed target genes in PD-EVs. This analysis led to the identification of tRF-02514, whose associated molecular pathways were found to be involved in pyroptosis. Subsequently, the target genes of tRF-02514 were identified. To validate the findings in a physiological context, in vivo experiments were performed using mice with PD. Behavioral changes in mice were observed before and after the targeted inhibition of tRF-02514. Additionally, the whole brain tissue, substantia nigra, and peripheral blood samples of mice were collected to evaluate the expression of inflammatory factors, autophagy markers, pyroptosis-related proteins, and neuroprotective genes, including brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF), which are necessary for defense against neuronal damage. tRF-02514 promoted the release of inflammatory factors, induced pyroptosis in microglia, and accelerated neuronal loss in PD by targeting ATG5 and inhibiting autophagy. Inhibition of tRF-02514 effectively mitigated these detrimental effects, protecting neurons, promoting autophagy, and delaying the progression of PD. These findings offer valuable insights into the role of tRF-02514 in the pathogenesis of PD and highlight its potential as a therapeutic target for PD.
Inhibition of tRF- 02514 in Extracellular Vesicles Preserves Microglia Pyroptosis and Protects Against Parkinson's Disease.
抑制细胞外囊泡中的 tRF-02514 可防止小胶质细胞焦亡并预防帕金森病
阅读:4
作者:Dong Xiaolin, Li Qingyun, Li Rui, Li Yanping, Jin Furong, Li Hongmei, Tu Kun, Wu Gang
| 期刊: | Molecular Neurobiology | 影响因子: | 4.300 |
| 时间: | 2025 | 起止号: | 2025 Sep;62(9):11047-11063 |
| doi: | 10.1007/s12035-025-04925-2 | 研究方向: | 细胞生物学 |
| 疾病类型: | 帕金森 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
