Identification of TRPV1-Inhibitory Peptides from Takifugu fasciatus Skin Hydrolysate and Their Skin-Soothing Mechanisms.

从河豚鱼皮水解物中鉴定TRPV1抑制肽及其皮肤舒缓机制

阅读:4
作者:Tang Haiyan, Chen Bei, Zhang Dong, Wu Ruowen, Qiao Kun, Chen Kang, Su Yongchang, Cai Shuilin, Xu Min, Liu Shuji, Liu Zhiyu
Skin sensitivity is increasingly prevalent, necessitating new therapeutic agents. This study screened multifunctional peptides from Takifugu fasciatus skin for transient receptor potential vanilloid 1 (TRPV1)-inhibitory and anti-inflammatory activities and investigated their mechanisms in alleviating sensitive skin (SS). A low-molecular-weight hydrolysate was prepared through enzymatic hydrolysis of T. fasciatus skin, followed by ultrafiltration, with subsequent peptide identification performed using nano-HPLC-MS/MS and molecular docking-based virtual screening. Among 20 TRPV1-antagonistic peptides (TFTIPs), QFF (T10), LDIF (T14), and FFR (T18) exhibited potent anti-inflammatory effects in (lipopolysaccharide) LPS-induced RAW 264.7 macrophages. T14 showed the strongest TRPV1 inhibition; T14 (200 μM) inhibited Ca(2)⁺ in capsaicin-stimulated HaCaT cells by 73.1% and showed stable binding in molecular docking, warranting further analysis. Mechanistic studies revealed that T14 suppressed NF-κB signaling by downregulating p65 protein expression, thereby reducing pro-inflammatory cytokine secretion (G-CSF, GM-CSF, ICAM-1, IL-6, TNF-α) in RAW 264.7 cells. Additionally, T14 (400 μM) inhibited ET-1 in LPS-stimulated endothelial cells by 75.0%; ICAM-1 reached 49.0%. Network pharmacology predicted STAT3, MAPK3, SPHK1, and CTSB as key targets mediating T14's effects. These study findings suggest that T14 may be a promising candidate for skincare applications targeting SS.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。