BACKGROUND: Alzheimer's disease (AD) is a common neurodegenerative disease, and its pathogenesis is closely associated with neuroinflammation. The control of neuroinflammation in AD is the focus of current research. soluble epoxide hydrolase (sEH) protein is increased in the brain tissues of patients with AD and has been targeted by multiple genome wide association studies as a prime target for treating AD. Since sEH induces nerve inflammation by degrading epoxyeicosatrienoic acids (EETs), application of sEH inhibitor and sEH gene knockout are effective ways to improve the bioavailability of EETs and inhibit or even resolve neuroinflammation in AD. 1-trifluoromethoxyphenyl-3-(1-propionylpiperidin-4-yl) urea (TPPU) is a potent sEH inhibitor that has been shown to be effective in preclinical animal models of a variety of chronic inflammatory diseases. This study aims to further explore whether TPPU can alleviate AD neuroinflammation. METHODS: We established an Aβ42-transgenic Drosophila melanogaster model using the galactose-regulated upstream promoter element 4 (GAL4) / upstream active sequence (UAS) expression system and investigated the protective and anti-neuroinflammatory effects of TPPU against Aβ toxicity. We detected behavioral indexes (survival time, crawling ability, and olfactory memory) and biochemical indexes malondialdehyde (MDA) content and superoxide dismutase (SOD) activity in brain tissues of Aβ42 transgenic flies. Finally, we explored the anti-neuroinflammatory effect of TPPU and its possible mechanism by stimulating cocultures of human SH-SY5Y cells and HMC3 cells with Aβ(25-35) to model neuronal cell inflammation, and evaluated the cells by fluorescence microscopy, ELISA, Western Blot, and Real-time PCR. RESULTS: We found that TPPU improved the survival time, crawling ability, and olfactory memory of Aβ42-transgenic flies. We also observed reduction of MDA content and elevation of SOD activity in the brain tissues of these flies. In human cell models, we found that TPPU improved cell viability, reduced cell apoptosis, decreased lipid oxidation, inhibited oxidative damage, thus playing a neuroprotective role. The inflammatory cytokines tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), interleukin-6 (IL-6) and interleukin-18 (IL-18) were downregulated, and the mRNA expression of the M2 microglia markers CD206 and SOCS3 were upregulated by TPPU; thus, TPPU inhibited neuroinflammatory responses. TPPU exerted neuroprotective and anti-inflammatory effects by decreasing the protein expression of the sEH-encoding gene EPHX2 and increasing the levels of 11,12-epoxyeicosatrienoic acid (11,12-EET) and 14,15-epoxyeicosatrienoic acid (14,15-EET). The inhibitory effect of TPPU on Aβ(25-35)-mediated neuroinflammation was associated with inhibition of the toll like receptor 4 (TLR4)/nuclear transcription factor-κB (NF-κB) pathway and p38 mitogen activated protein kinases (MAPK)/NF-κB pathway. CONCLUSIONS: We report that the sEH inhibitor TPPU exerts neuroprotective and anti-neuroinflammatory effects in AD models, and it is expected that this drug could potentially be used for the prevention and treatment of AD.
The soluble epoxide hydrolase inhibitor TPPU alleviates Aβ-mediated neuroinflammatory responses in Drosophila melanogaster and cellular models of alzheimer's disease.
可溶性环氧化物水解酶抑制剂TPPU可减轻果蝇和阿尔茨海默病细胞模型中Aβ介导的神经炎症反应
阅读:7
作者:Sun Xiaowen, Liu Hongxiang, Li Wei, Li Lin, Tian Qian, Cao Qingyang, Meng Yun, Shen Yan, Che Fengyuan, Chiu Joanna C, Yu Jixu, Hammock Bruce D
| 期刊: | Journal of Inflammation-London | 影响因子: | 4.100 |
| 时间: | 2025 | 起止号: | 2025 Jun 23; 22(1):25 |
| doi: | 10.1186/s12950-025-00449-7 | 种属: | Drosophila |
| 研究方向: | 神经科学、细胞生物学 | 疾病类型: | 神经炎症 |
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
