The accumulation of free fatty acids (FFAs) in hepatocytes is a key characteristic of metabolic dysfunction-associated steatotic liver disease (MASLD), which leads to lipid peroxidation and ultimately results in ferroptosis. Currently, there is an absence of efficacious therapeutic options available for the management of MASLD. Consequently, an in-depth exploration of the roles of FFAs and ferroptosis in the progression of MASLD may reveal hitherto unidentified therapeutic targets. In the study, we established an early lesion model of MASLD, namely NAFL, and comprehensive analyses of lipid metabolism, hepatocellular injury, iron homeostasis, and ferroptosis were performed. The HFD and FFAs treatment significantly elevated the expression of enzymes associated with lipid synthesis, including ACC1 and FASN, leading to enhanced lipid accumulation in hepatocytes. Additionally, HFD and FFAs resulted in increased iron loading and a reduction in the levels of the antioxidant enzyme GPX4, which ultimately triggers ferroptosis. In contrast, the administration of melatonin effectively inhibited the activity of lipid synthesis-related enzymes, decreased hepatic lipid deposition, alleviated free fatty acid-induced iron dysregulation, and mitigated liver damage. Mechanistically, melatonin has been shown to attenuate hepatocyte ferroptosis by modulating the KEAP1/NRF2/HO-1 pathway, which in turn diminishes free fatty acids-induced oxidative stress. In conclusion, melatonin alleviates MASLD progression by curbing FFAs-induced oxidative stress and ferroptosis. These findings provide valuable insights into the mechanisms underlying MASLD progression and highlight melatonin as a potential therapeutic agent for the management of MASLD.
Melatonin Prevents the Progression of MASLD via Inhibiting FFAs-Induced Ferroptosis through KEAP1/NRF2/HO-1 Pathway.
褪黑素通过 KEAP1/NRF2/HO-1 通路抑制 FFA 诱导的铁死亡,从而阻止 MASLD 的进展
阅读:6
作者:Li Shuojiao, Rao Peng, Yu Wenxian, Tang Yue, Jiang Xuanpeng, Liu Jiatao
| 期刊: | Biomolecules & Therapeutics | 影响因子: | 3.200 |
| 时间: | 2025 | 起止号: | 2025 Sep 1; 33(5):876-889 |
| doi: | 10.4062/biomolther.2025.037 | 研究方向: | 信号转导 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
