Light controls gene functions through alternative splicing in fungi.

光照通过真菌的选择性剪接来控制基因功能

阅读:9
作者:Li Yifan, Lu Huanhong, Guo Degang, Li Xiaoyan, Qi Fei, Zhang Jian, Fischer Reinhard, Shen Qirong, Yu Zhenzhong
Light controls important biological processes in fungi by regulating transcriptional gene activation. Here, we found that beyond the regulation of mRNA transcript abundance, light regulates alternative splicing (AS) in the filamentous fungi Aspergillus nidulans, Trichoderma guizhouense, and Neurospora crassa. Blue light-regulated AS was involved in ergothioneine biosynthesis and conidiation in T. guizhouense, which required the blue light receptor BLR1. Blue light activated the MAPK HOG (Sak) pathway which then transmitted the signal via the serine/threonine kinase SRK1 to the AS key regulator SRP1. SRK1 and SRP1 are important for light-induced conidiation. The light-activated HOG pathway led to an increase of the SRK1 protein level and its phosphorylation status. Phosphorylated SRK1 translocated from the cytoplasm to the nucleus to interact with SRP1, thereby regulating AS efficiency. This study unravels another level of complexity of fungal environmental sensing and responses and also first describes the entire cascade from an environmental signal to the splicing machinery.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。