BACKGROUND: Dunaliella microalgae, such as Dunaliella salina riching in β-carotene and Dunaliella bardawil rich in lutein and α-carotene, have been used in aquaculture, supplements, cosmetics, and feed industries. The genus Dunaliella is diverse; therefore, characterization of novel strains and isolation of new varieties through mutagenesis technology will promote natural carotenoid bioproduction. RESULTS: Salt stress test demonstrated that the newly isolated microalgae strain ZP-1 was a halotolerant strain. Morphology observation and molecular phylogeny analysis indicated that the unicellular green microalga ZP-1 was a member of the genus Dunaliella. Biomass of ZP-1 in RAM medium was up to 2.45 g/L, showing the advantage over other common Dunaliella microalgae in terms of yield. Furthermore, Ethyl methanesulfonate (EMS) mutant library was generated from this high-biomass strain, aiming to improve natural carotenoid productivity. A mutant strain was selected through morphology observation combining with carotenoid quantification by HPLC, which was nominated as turn yellow dunaliella 4 (tyd4). The mutant tyd4 displayed an increased lutein productivity by 28.55% and an increased zeaxanthin productivity by 22.19%. Biomass of tyd4 was promoted by 17.40% through continuous culture under red light. Application of exogenous 1.0 μM melatonin on the mutant tyd4 led to increased cell density and improved biomass. CONCLUSIONS: Results in this study support that EMS mutagenesis is an effective breeding approach for further improvement of Dunaliella sp. ZP-1, which is a high-biomass microalgae exhibiting potential to overcome the bottleneck of low biomass of current commercial Dunaliella strains. The mutant tyd4 had higher contents of both lutein and zeaxanthin, whose yield could be further elevated by red light and melatonin. This study provided new microalgae sources for scientific research and technical reference for the bioproduction of natural carotenoids.
Elevated accumulation of lutein and zeaxanthin in a novel high-biomass yielding strain Dunaliella sp. ZP-1 obtained through EMS mutagenesis.
通过 EMS 诱变获得的新型高生物量菌株 Dunaliella sp. ZP-1 中叶黄素和玉米黄素的积累量显著升高
阅读:12
作者:Liu Chenglong, Huang Danqiong, Zhuo Xinran, Luo Ying, Zhou Junjie, Feng Jinwei, Wen Xueer, Liao Zixin, Wu Runling, Hu Zhangli, Lou Sulin, Li Hui
| 期刊: | Biotechnology for Biofuels and Bioproducts | 影响因子: | 4.600 |
| 时间: | 2025 | 起止号: | 2025 Mar 27; 18(1):39 |
| doi: | 10.1186/s13068-025-02629-2 | 研究方向: | 其它 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
