Multi-Method Combined Screening of Agarase-Secreting Fungi from Sea Cucumber and Preliminary Analyses on Their Agarases and Agar-Oligosaccharide Products.

海参琼脂酶分泌真菌的多方法联合筛选及其琼脂酶和琼脂寡糖产物的初步分析

阅读:6
作者:He Shuting, Lu Tiantian, Sun Xiaoyu, Ban Fangfang, Zhou Longjian, Liu Yayue, Feng Yan, Zhang Yi
Agar can be degraded into agar-oligosaccharides by physical, chemical, and biological methods, but the further industrial application of agar-oligosaccharides has been limited by the environmental pollution of traditional agar-oligosaccharides preparation methods and the lack of novel agarase. In this study, we reported the screening of 12 strains with agar-degrading activity from sea cucumber intestine and mucus using a combination of Gram's iodine staining and 3,5-dinitrosalicylic acid (DNS) method, during which five fungal strains exhibited high agarase activity. Their production of different agarases and agar-oligosaccharides could be visualized by zymogram assay and thin-layer chromatography. A strain ACD-11-B with the highest agarase activity showed 99.79% similarity to Aspergillus sydowii CBS593.65 for ITS rDNA sequence. Strain ACD-11-B produced five possible agarases with predicted molecular weights of 180, 95, 43, 33, and 20 kDa, approximately. The optimal temperature and pH of the crude enzyme production by strain ACD-11-B were 40 °C and 6.0. The crude enzyme was stable at 30 °C, and Ca(2+), K(+), and Na(+) could increase the activity of the crude enzyme. Its agarases demonstrated remarkable salt tolerance and substrate specificity, with neoagarobiose (NA2) identified as the main degradation product. These results indicate that the fungal strain ACD-11-B can secrete agarases with potential in industrial applications, making it a new producer strain for agarase production.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。