Membrane-less organelles, dynamic subcellular structures formed by RNA and RNA-binding proteins (RBPs) undergoing liquid-liquid phase separation (LLPS), play key roles in biological processes such as RNA degradation in processing bodies (P-bodies), translation inhibition in stress granules, and RNA splicing in nuclear speckles. However, the study of RNA species within these organelles has been hindered by the absence of simple, sensitive, and specific methodologies. Here, we introduce target transcript amplification and sequencing (TATA-seq), a novel strategy for precisely profiling RNA in membrane-less organelles via in situ targeted transcription and linear amplification. TATA-seq uses a primary antibody against a marker protein of the target organelle to recruit a secondary antibody conjugated with streptavidin, which binds an oligonucleotide containing a T7 promoter. This initiates in situ RNA reverse transcription, followed by amplification with T7 RNA polymerase to generate sufficient material for sequencing, ensuring a duplication rate of no more than 25% and a mapping ratio of â¼90%. An IgG control is used to subtract background noise during data analysis. We demonstrate the method's utility by profiling RNA in stress granules induced by sodium arsenite in HeLa cells, with validation through FISH and immunofluorescence colocalization. TATA-seq offers a simple, highly sensitive, and accurate tool for studying RNA dynamics in membrane-less organelles, advancing the capabilities of RNA research.
Profiling RNA subcellular localization in situ by TATA-seq.
利用 TATA-seq 技术对 RNA 亚细胞定位进行原位分析
阅读:7
作者:Li Junjie, Xu Chu, Jiang Xiao, Huang Xing, Ye Dan, Hu Lulu
| 期刊: | RNA | 影响因子: | 5.000 |
| 时间: | 2025 | 起止号: | 2025 Sep 16; 31(10):1523-1535 |
| doi: | 10.1261/rna.080670.125 | 研究方向: | 细胞生物学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
