BACKGROUND: Gastric cancer (GC) is a common malignancy characterized by the absence of reliable prognostic indicators and effective therapeutic targets. Claudin-9 (CLDN9) has been demonstrated to be upregulated in various cancers. However, its prognostic value, biological function, and regulatory mechanisms in GC remain unclear. Therefore, this study aimed to elucidate the role of CLDN9 in GC progression and its underlying mechanisms. METHODS: We utilized consensus cluster, random survival forest, and multivariate Cox regression analyses to identify CLDN9 in GC. Subsequently, we evaluated the mRNA and protein levels of CLDN9 in GC using quantitative real-time polymerase chain reaction (PCR) (qRT-PCR), Western blotting (WB), and immunohistochemistry (IHC). Furthermore, the role of CLDN9 in GC progression was investigated using a series of functional in vivo and in vitro experiments. Finally, we elucidated the molecular mechanisms of CLDN9 using bioinformatics, molecular biology, animal models, and patient tissue specimens. RESULTS: Two GC subtypes with survival and functional differences were identified based on glycolytic metabolic genes in the Cancer Genome Atlas (TCGA)- Stomach adenocarcinoma (STAD) dataset. A prognostic risk score was calculated using seven genes to assess the overall survival (OS) in GC. Using random survival forest and multivariate Cox analyses, we identified CLDN9 as the key gene linked to the glycolytic subtype and prognosis of GC. CLDN9 expression was significantly upregulated in patients with GC as well as in GC cells. CLDN9 knockdown inhibited tumor proliferation, invasion, and metastasis both in vivo and in vitro. Mechanistically, CLDN9 was found to regulate lactate dehydrogenase A (LDHA) expression and promote glycolytic metabolism by activating the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT)/hypoxia-inducible factor 1-alpha (HIF1α) signaling pathway. Additionally, lactate, a glycolytic metabolite, enhanced programmed cell death ligand 1 (PD-L1) lactylation and stability, which suppressed anti-tumor immunity in CD8(+) T cells, thereby contributing to GC progression. CONCLUSIONS: CLDN9 expression is associated with GC development and progression. Mechanistically, CLDN9 enhances the glycolysis pathway and facilitates PD-L1 lactylation through the PI3K/AKT/HIF1α signaling pathway, thereby suppressing anti-tumor immunity in CD8(+) T cells. CLDN9 has the potential to serve as a novel prognostic marker and therapeutic target for GC.
Claudin-9 (CLDN9) promotes gastric cancer progression by enhancing the glycolysis pathway and facilitating PD-L1 lactylation to suppress CD8(+) T cell anti-tumor immunity.
Claudin-9 (CLDN9) 通过增强糖酵解途径和促进 PD-L1 乳酸化来抑制 CD8(+) T 细胞抗肿瘤免疫,从而促进胃癌进展
阅读:6
作者:Hu Xingbin, Ouyang Wenhao, Chen Haizhu, Liu Zhihong, Lai Zijia, Yao Herui
| 期刊: | Cancer Pathogenesis and Therapy | 影响因子: | 2.800 |
| 时间: | 2025 | 起止号: | 2024 Sep 26; 3(3):253-266 |
| doi: | 10.1016/j.cpt.2024.09.006 | 研究方向: | 细胞生物学、肿瘤 |
| 疾病类型: | 胃癌 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
